/* * Copyright (C) 2006 Martin Willi * HSR Hochschule fuer Technik Rapperswil * Copyright (C) 2001 Jari Ruusu. * * Ported from strongSwans implementation written by Jari Ruusu. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. See . * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. */ #include #include "sha2_hasher.h" typedef struct private_sha512_hasher_t private_sha512_hasher_t; /** * Private data structure with hashing context for SHA384 and SHA512 */ struct private_sha512_hasher_t { /** * Public interface for this hasher. */ sha2_hasher_t public; unsigned char sha_out[128]; /* results are here, bytes 0..47/0..63 */ uint64_t sha_H[8]; uint64_t sha_blocks; uint64_t sha_blocksMSB; int sha_bufCnt; }; typedef struct private_sha256_hasher_t private_sha256_hasher_t; /** * Private data structure with hashing context for SHA256 */ struct private_sha256_hasher_t { /** * Public interface for this hasher. */ sha2_hasher_t public; unsigned char sha_out[64]; /* results are here, bytes 0...31 */ uint32_t sha_H[8]; uint64_t sha_blocks; int sha_bufCnt; }; static const uint32_t sha224_hashInit[8] = { 0xc1059ed8, 0x367cd507, 0x3070dd17, 0xf70e5939, 0xffc00b31, 0x68581511, 0x64f98fa7, 0xbefa4fa4 }; static const uint32_t sha256_hashInit[8] = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 }; static const uint32_t sha256_K[64] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 }; static const uint64_t sha512_hashInit[8] = { 0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL, 0x3c6ef372fe94f82bULL, 0xa54ff53a5f1d36f1ULL, 0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL, 0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL }; static const uint64_t sha384_hashInit[8] = { 0xcbbb9d5dc1059ed8ULL, 0x629a292a367cd507ULL, 0x9159015a3070dd17ULL, 0x152fecd8f70e5939ULL, 0x67332667ffc00b31ULL, 0x8eb44a8768581511ULL, 0xdb0c2e0d64f98fa7ULL, 0x47b5481dbefa4fa4ULL }; static const uint64_t sha512_K[80] = { 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL }; /* set macros for SHA256 */ #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) #define R(x,y) ((y) >> (x)) #define S(x,y) (((y) >> (x)) | ((y) << (32 - (x)))) #define uSig0(x) ((S(2,(x))) ^ (S(13,(x))) ^ (S(22,(x)))) #define uSig1(x) ((S(6,(x))) ^ (S(11,(x))) ^ (S(25,(x)))) #define lSig0(x) ((S(7,(x))) ^ (S(18,(x))) ^ (R(3,(x)))) #define lSig1(x) ((S(17,(x))) ^ (S(19,(x))) ^ (R(10,(x)))) /** * Single block SHA256 transformation */ static void sha256_transform(private_sha256_hasher_t *ctx, const unsigned char *datap) { register int j; uint32_t a, b, c, d, e, f, g, h; uint32_t T1, T2, W[64], Wm2, Wm15; /* read the data, big endian byte order */ j = 0; do { W[j] = (((uint32_t)(datap[0]))<<24) | (((uint32_t)(datap[1]))<<16) | (((uint32_t)(datap[2]))<<8 ) | ((uint32_t)(datap[3])); datap += 4; } while(++j < 16); /* initialize variables a...h */ a = ctx->sha_H[0]; b = ctx->sha_H[1]; c = ctx->sha_H[2]; d = ctx->sha_H[3]; e = ctx->sha_H[4]; f = ctx->sha_H[5]; g = ctx->sha_H[6]; h = ctx->sha_H[7]; /* apply compression function */ j = 0; do { if(j >= 16) { Wm2 = W[j - 2]; Wm15 = W[j - 15]; W[j] = lSig1(Wm2) + W[j - 7] + lSig0(Wm15) + W[j - 16]; } T1 = h + uSig1(e) + Ch(e,f,g) + sha256_K[j] + W[j]; T2 = uSig0(a) + Maj(a,b,c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; } while(++j < 64); /* compute intermediate hash value */ ctx->sha_H[0] += a; ctx->sha_H[1] += b; ctx->sha_H[2] += c; ctx->sha_H[3] += d; ctx->sha_H[4] += e; ctx->sha_H[5] += f; ctx->sha_H[6] += g; ctx->sha_H[7] += h; ctx->sha_blocks++; } /** * Update SHA256 hash */ static void sha256_write(private_sha256_hasher_t *ctx, const unsigned char *datap, int length) { while(length > 0) { if(!ctx->sha_bufCnt) { while(length >= sizeof(ctx->sha_out)) { sha256_transform(ctx, datap); datap += sizeof(ctx->sha_out); length -= sizeof(ctx->sha_out); } if(!length) return; } ctx->sha_out[ctx->sha_bufCnt] = *datap++; length--; if(++ctx->sha_bufCnt == sizeof(ctx->sha_out)) { sha256_transform(ctx, &ctx->sha_out[0]); ctx->sha_bufCnt = 0; } } } /** * finalize SHA256 hash */ static void sha256_final(private_sha256_hasher_t *ctx, u_char *buf, size_t len) { register int j; uint64_t bitLength; uint32_t i; unsigned char padByte, *datap; bitLength = (ctx->sha_blocks << 9) | (ctx->sha_bufCnt << 3); padByte = 0x80; sha256_write(ctx, &padByte, 1); /* pad extra space with zeroes */ padByte = 0; while(ctx->sha_bufCnt != 56) { sha256_write(ctx, &padByte, 1); } /* write bit length, big endian byte order */ ctx->sha_out[56] = bitLength >> 56; ctx->sha_out[57] = bitLength >> 48; ctx->sha_out[58] = bitLength >> 40; ctx->sha_out[59] = bitLength >> 32; ctx->sha_out[60] = bitLength >> 24; ctx->sha_out[61] = bitLength >> 16; ctx->sha_out[62] = bitLength >> 8; ctx->sha_out[63] = bitLength; sha256_transform(ctx, &ctx->sha_out[0]); datap = buf; j = 0; do { i = ctx->sha_H[j]; datap[0] = i >> 24; datap[1] = i >> 16; datap[2] = i >> 8; datap[3] = i; datap += 4; } while(++j < len / 4); } /* update macros for SHA512 */ #undef S #undef uSig0 #undef uSig1 #undef lSig0 #undef lSig1 #define S(x,y) (((y) >> (x)) | ((y) << (64 - (x)))) #define uSig0(x) ((S(28,(x))) ^ (S(34,(x))) ^ (S(39,(x)))) #define uSig1(x) ((S(14,(x))) ^ (S(18,(x))) ^ (S(41,(x)))) #define lSig0(x) ((S(1,(x))) ^ (S(8,(x))) ^ (R(7,(x)))) #define lSig1(x) ((S(19,(x))) ^ (S(61,(x))) ^ (R(6,(x)))) /** * Single block SHA384/SHA512 transformation */ static void sha512_transform(private_sha512_hasher_t *ctx, const unsigned char *datap) { register int j; uint64_t a, b, c, d, e, f, g, h; uint64_t T1, T2, W[80], Wm2, Wm15; /* read the data, big endian byte order */ j = 0; do { W[j] = (((uint64_t)(datap[0]))<<56) | (((uint64_t)(datap[1]))<<48) | (((uint64_t)(datap[2]))<<40) | (((uint64_t)(datap[3]))<<32) | (((uint64_t)(datap[4]))<<24) | (((uint64_t)(datap[5]))<<16) | (((uint64_t)(datap[6]))<<8 ) | ((uint64_t)(datap[7])); datap += 8; } while(++j < 16); /* initialize variables a...h */ a = ctx->sha_H[0]; b = ctx->sha_H[1]; c = ctx->sha_H[2]; d = ctx->sha_H[3]; e = ctx->sha_H[4]; f = ctx->sha_H[5]; g = ctx->sha_H[6]; h = ctx->sha_H[7]; /* apply compression function */ j = 0; do { if(j >= 16) { Wm2 = W[j - 2]; Wm15 = W[j - 15]; W[j] = lSig1(Wm2) + W[j - 7] + lSig0(Wm15) + W[j - 16]; } T1 = h + uSig1(e) + Ch(e,f,g) + sha512_K[j] + W[j]; T2 = uSig0(a) + Maj(a,b,c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; } while(++j < 80); /* compute intermediate hash value */ ctx->sha_H[0] += a; ctx->sha_H[1] += b; ctx->sha_H[2] += c; ctx->sha_H[3] += d; ctx->sha_H[4] += e; ctx->sha_H[5] += f; ctx->sha_H[6] += g; ctx->sha_H[7] += h; ctx->sha_blocks++; if(!ctx->sha_blocks) ctx->sha_blocksMSB++; } /** * Update a SHA384/SHA512 hash */ static void sha512_write(private_sha512_hasher_t *ctx, const unsigned char *datap, int length) { while(length > 0) { if(!ctx->sha_bufCnt) { while(length >= sizeof(ctx->sha_out)) { sha512_transform(ctx, datap); datap += sizeof(ctx->sha_out); length -= sizeof(ctx->sha_out); } if(!length) return; } ctx->sha_out[ctx->sha_bufCnt] = *datap++; length--; if(++ctx->sha_bufCnt == sizeof(ctx->sha_out)) { sha512_transform(ctx, &ctx->sha_out[0]); ctx->sha_bufCnt = 0; } } } /** * Finalize a SHA384/SHA512 hash */ static void sha512_final(private_sha512_hasher_t *ctx, u_char *buf, size_t len) { register int j; uint64_t bitLength, bitLengthMSB; uint64_t i; unsigned char padByte, *datap; bitLength = (ctx->sha_blocks << 10) | (ctx->sha_bufCnt << 3); bitLengthMSB = (ctx->sha_blocksMSB << 10) | (ctx->sha_blocks >> 54); padByte = 0x80; sha512_write(ctx, &padByte, 1); /* pad extra space with zeroes */ padByte = 0; while(ctx->sha_bufCnt != 112) { sha512_write(ctx, &padByte, 1); } /* write bit length, big endian byte order */ ctx->sha_out[112] = bitLengthMSB >> 56; ctx->sha_out[113] = bitLengthMSB >> 48; ctx->sha_out[114] = bitLengthMSB >> 40; ctx->sha_out[115] = bitLengthMSB >> 32; ctx->sha_out[116] = bitLengthMSB >> 24; ctx->sha_out[117] = bitLengthMSB >> 16; ctx->sha_out[118] = bitLengthMSB >> 8; ctx->sha_out[119] = bitLengthMSB; ctx->sha_out[120] = bitLength >> 56; ctx->sha_out[121] = bitLength >> 48; ctx->sha_out[122] = bitLength >> 40; ctx->sha_out[123] = bitLength >> 32; ctx->sha_out[124] = bitLength >> 24; ctx->sha_out[125] = bitLength >> 16; ctx->sha_out[126] = bitLength >> 8; ctx->sha_out[127] = bitLength; sha512_transform(ctx, &ctx->sha_out[0]); datap = buf; j = 0; do { i = ctx->sha_H[j]; datap[0] = i >> 56; datap[1] = i >> 48; datap[2] = i >> 40; datap[3] = i >> 32; datap[4] = i >> 24; datap[5] = i >> 16; datap[6] = i >> 8; datap[7] = i; datap += 8; } while(++j < len / 8); } METHOD(hasher_t, reset224, bool, private_sha256_hasher_t *this) { memcpy(&this->sha_H[0], &sha224_hashInit[0], sizeof(this->sha_H)); this->sha_blocks = 0; this->sha_bufCnt = 0; return TRUE; } METHOD(hasher_t, reset256, bool, private_sha256_hasher_t *this) { memcpy(&this->sha_H[0], &sha256_hashInit[0], sizeof(this->sha_H)); this->sha_blocks = 0; this->sha_bufCnt = 0; return TRUE; } METHOD(hasher_t, reset384, bool, private_sha512_hasher_t *this) { memcpy(&this->sha_H[0], &sha384_hashInit[0], sizeof(this->sha_H)); this->sha_blocks = 0; this->sha_blocksMSB = 0; this->sha_bufCnt = 0; return TRUE; } METHOD(hasher_t, reset512, bool, private_sha512_hasher_t *this) { memcpy(&this->sha_H[0], &sha512_hashInit[0], sizeof(this->sha_H)); this->sha_blocks = 0; this->sha_blocksMSB = 0; this->sha_bufCnt = 0; return TRUE; } METHOD(hasher_t, get_hash224, bool, private_sha256_hasher_t *this, chunk_t chunk, uint8_t *buffer) { sha256_write(this, chunk.ptr, chunk.len); if (buffer != NULL) { sha256_final(this, buffer, HASH_SIZE_SHA224); reset224(this); } return TRUE; } METHOD(hasher_t, get_hash256, bool, private_sha256_hasher_t *this, chunk_t chunk, uint8_t *buffer) { sha256_write(this, chunk.ptr, chunk.len); if (buffer != NULL) { sha256_final(this, buffer, HASH_SIZE_SHA256); reset256(this); } return TRUE; } METHOD(hasher_t, get_hash384, bool, private_sha512_hasher_t *this, chunk_t chunk, uint8_t *buffer) { sha512_write(this, chunk.ptr, chunk.len); if (buffer != NULL) { sha512_final(this, buffer, HASH_SIZE_SHA384); reset384(this); } return TRUE; } METHOD(hasher_t, get_hash512, bool, private_sha512_hasher_t *this, chunk_t chunk, uint8_t *buffer) { sha512_write(this, chunk.ptr, chunk.len); if (buffer != NULL) { sha512_final(this, buffer, HASH_SIZE_SHA512); reset512(this); } return TRUE; } METHOD(hasher_t, allocate_hash224, bool, private_sha256_hasher_t *this, chunk_t chunk, chunk_t *hash) { chunk_t allocated_hash = chunk_empty; if (hash) { *hash = allocated_hash = chunk_alloc(HASH_SIZE_SHA224); } return get_hash224(this, chunk, allocated_hash.ptr); } METHOD(hasher_t, allocate_hash256, bool, private_sha256_hasher_t *this, chunk_t chunk, chunk_t *hash) { chunk_t allocated_hash = chunk_empty; if (hash) { *hash = allocated_hash = chunk_alloc(HASH_SIZE_SHA256); } return get_hash256(this, chunk, allocated_hash.ptr); } METHOD(hasher_t, allocate_hash384, bool, private_sha512_hasher_t *this, chunk_t chunk, chunk_t *hash) { chunk_t allocated_hash = chunk_empty; if (hash) { *hash = allocated_hash = chunk_alloc(HASH_SIZE_SHA384); } return get_hash384(this, chunk, allocated_hash.ptr); } METHOD(hasher_t, allocate_hash512, bool, private_sha512_hasher_t *this, chunk_t chunk, chunk_t *hash) { chunk_t allocated_hash = chunk_empty; if (hash) { *hash = allocated_hash = chunk_alloc(HASH_SIZE_SHA512); } return get_hash512(this, chunk, allocated_hash.ptr); } METHOD(hasher_t, get_hash_size224, size_t, private_sha256_hasher_t *this) { return HASH_SIZE_SHA224; } METHOD(hasher_t, get_hash_size256, size_t, private_sha256_hasher_t *this) { return HASH_SIZE_SHA256; } METHOD(hasher_t, get_hash_size384, size_t, private_sha512_hasher_t *this) { return HASH_SIZE_SHA384; } METHOD(hasher_t, get_hash_size512, size_t, private_sha512_hasher_t *this) { return HASH_SIZE_SHA512; } METHOD(hasher_t, destroy, void, sha2_hasher_t *this) { free(this); } /* * Described in header. */ sha2_hasher_t *sha2_hasher_create(hash_algorithm_t algorithm) { switch (algorithm) { case HASH_SHA224: { private_sha256_hasher_t *this; INIT(this, .public = { .hasher_interface = { .reset = _reset224, .get_hash_size = _get_hash_size224, .get_hash = _get_hash224, .allocate_hash = _allocate_hash224, .destroy = _destroy, }, }, ); reset224(this); return &this->public; } case HASH_SHA256: { private_sha256_hasher_t *this; INIT(this, .public = { .hasher_interface = { .reset = _reset256, .get_hash_size = _get_hash_size256, .get_hash = _get_hash256, .allocate_hash = _allocate_hash256, .destroy = _destroy, }, }, ); reset256(this); return &this->public; } case HASH_SHA384: { private_sha512_hasher_t *this; INIT(this, .public = { .hasher_interface = { .reset = _reset384, .get_hash_size = _get_hash_size384, .get_hash = _get_hash384, .allocate_hash = _allocate_hash384, .destroy = _destroy, }, }, ); reset384(this); return &this->public; } case HASH_SHA512: { private_sha512_hasher_t *this; INIT(this, .public = { .hasher_interface = { .reset = _reset512, .get_hash_size = _get_hash_size512, .get_hash = _get_hash512, .allocate_hash = _allocate_hash512, .destroy = _destroy, }, }, ); reset512(this); return &this->public; } default: return NULL; } }