/* * Copyright (C) 2016 Tobias Brunner * HSR Hochschule fuer Technik Rapperswil * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. See . * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. */ #include "test_suite.h" #include struct { char *constraints; signature_scheme_t sig[5]; signature_scheme_t ike[5]; } sig_constraints_tests[] = { { "rsa-sha256", { SIGN_RSA_EMSA_PKCS1_SHA2_256, 0 }, {0}}, { "rsa-sha256-sha512", { SIGN_RSA_EMSA_PKCS1_SHA2_256, SIGN_RSA_EMSA_PKCS1_SHA2_512, 0 }, {0}}, { "ecdsa-sha256", { SIGN_ECDSA_WITH_SHA256_DER, SIGN_ECDSA_256, 0 }, {0}}, { "rsa-sha256-ecdsa-sha256", { SIGN_RSA_EMSA_PKCS1_SHA2_256, SIGN_ECDSA_WITH_SHA256_DER, SIGN_ECDSA_256, 0 }, {0}}, { "pubkey-sha256", { SIGN_RSA_EMSA_PKCS1_SHA2_256, SIGN_ECDSA_WITH_SHA256_DER, SIGN_ECDSA_256, SIGN_BLISS_WITH_SHA2_256, 0 }, {0}}, { "ike:rsa-sha256", {0}, { SIGN_RSA_EMSA_PKCS1_SHA2_256, 0 }}, { "ike:rsa-sha256-rsa-sha256", { SIGN_RSA_EMSA_PKCS1_SHA2_256, 0 }, { SIGN_RSA_EMSA_PKCS1_SHA2_256, 0 }}, { "rsa-sha256-ike:rsa-sha256", { SIGN_RSA_EMSA_PKCS1_SHA2_256, 0 }, { SIGN_RSA_EMSA_PKCS1_SHA2_256, 0 }}, { "ike:pubkey-sha256", {0}, { SIGN_RSA_EMSA_PKCS1_SHA2_256, SIGN_ECDSA_WITH_SHA256_DER, SIGN_ECDSA_256, SIGN_BLISS_WITH_SHA2_256, 0 }}, { "rsa-ecdsa-sha256", { SIGN_ECDSA_WITH_SHA256_DER, SIGN_ECDSA_256, 0 }, {0}}, { "rsa-4096-ecdsa-sha256", { SIGN_ECDSA_WITH_SHA256_DER, SIGN_ECDSA_256, 0 }, {0}}, { "rsa-4096-ecdsa-256-sha256", { SIGN_ECDSA_WITH_SHA256_DER, SIGN_ECDSA_256, 0 }, {0}}, { "rsa-ecdsa256-sha256", { SIGN_RSA_EMSA_PKCS1_SHA2_256, 0 }, {0}}, { "rsa4096-sha256", {0}, {0}}, { "sha256", {0}, {0}}, { "ike:sha256", {0}, {0}}, }; static void check_sig_constraints(auth_cfg_t *cfg, auth_rule_t type, signature_scheme_t expected[]) { enumerator_t *enumerator; auth_rule_t t; signature_params_t *value; int i = 0; enumerator = cfg->create_enumerator(cfg); while (enumerator->enumerate(enumerator, &t, &value)) { if (t == type) { ck_assert(expected[i]); ck_assert_int_eq(expected[i], value->scheme); i++; } } enumerator->destroy(enumerator); ck_assert(!expected[i]); } START_TEST(test_sig_constraints) { auth_cfg_t *cfg; signature_scheme_t none[] = {0}; cfg = auth_cfg_create(); cfg->add_pubkey_constraints(cfg, sig_constraints_tests[_i].constraints, FALSE); check_sig_constraints(cfg, AUTH_RULE_SIGNATURE_SCHEME, sig_constraints_tests[_i].sig); check_sig_constraints(cfg, AUTH_RULE_IKE_SIGNATURE_SCHEME, none); cfg->destroy(cfg); lib->settings->set_bool(lib->settings, "%s.signature_authentication_constraints", FALSE, lib->ns); cfg = auth_cfg_create(); cfg->add_pubkey_constraints(cfg, sig_constraints_tests[_i].constraints, TRUE); check_sig_constraints(cfg, AUTH_RULE_SIGNATURE_SCHEME, sig_constraints_tests[_i].sig); check_sig_constraints(cfg, AUTH_RULE_IKE_SIGNATURE_SCHEME, sig_constraints_tests[_i].ike); cfg->destroy(cfg); } END_TEST START_TEST(test_ike_constraints_fallback) { auth_cfg_t *cfg; lib->settings->set_bool(lib->settings, "%s.signature_authentication_constraints", TRUE, lib->ns); cfg = auth_cfg_create(); cfg->add_pubkey_constraints(cfg, sig_constraints_tests[_i].constraints, TRUE); check_sig_constraints(cfg, AUTH_RULE_SIGNATURE_SCHEME, sig_constraints_tests[_i].sig); if (sig_constraints_tests[_i].ike[0]) { check_sig_constraints(cfg, AUTH_RULE_IKE_SIGNATURE_SCHEME, sig_constraints_tests[_i].ike); } else { check_sig_constraints(cfg, AUTH_RULE_IKE_SIGNATURE_SCHEME, sig_constraints_tests[_i].sig); } cfg->destroy(cfg); } END_TEST typedef union { rsa_pss_params_t pss; } signature_param_types_t; struct { char *constraints; signature_scheme_t sig[5]; signature_param_types_t p[5]; } sig_constraints_params_tests[] = { { "rsa/pss-sha256", { SIGN_RSA_EMSA_PSS, 0 }, { { .pss = { .hash = HASH_SHA256, .mgf1_hash = HASH_SHA256, .salt_len = HASH_SIZE_SHA256, }}}}, { "rsa/pss-sha256-sha384", { SIGN_RSA_EMSA_PSS, SIGN_RSA_EMSA_PSS, 0 }, { { .pss = { .hash = HASH_SHA256, .mgf1_hash = HASH_SHA256, .salt_len = HASH_SIZE_SHA256, }}, { .pss = { .hash = HASH_SHA384, .mgf1_hash = HASH_SHA384, .salt_len = HASH_SIZE_SHA384, }}}}, { "rsa/pss-sha256-rsa-sha256", { SIGN_RSA_EMSA_PSS, SIGN_RSA_EMSA_PKCS1_SHA2_256, 0 }, { { .pss = { .hash = HASH_SHA256, .mgf1_hash = HASH_SHA256, .salt_len = HASH_SIZE_SHA256, }}}}, { "rsa-sha256-rsa/pss-sha256", { SIGN_RSA_EMSA_PKCS1_SHA2_256, SIGN_RSA_EMSA_PSS, 0 }, { {}, { .pss = { .hash = HASH_SHA256, .mgf1_hash = HASH_SHA256, .salt_len = HASH_SIZE_SHA256, }}}}, { "rsa/pss", { 0 }, {}}, }; static void check_sig_constraints_params(auth_cfg_t *cfg, auth_rule_t type, signature_scheme_t scheme[], signature_param_types_t p[]) { enumerator_t *enumerator; auth_rule_t t; signature_params_t *value; int i = 0; enumerator = cfg->create_enumerator(cfg); while (enumerator->enumerate(enumerator, &t, &value)) { if (t == type) { if (scheme[i] == SIGN_RSA_EMSA_PSS) { signature_params_t expected = { .scheme = scheme[i], .params = &p[i].pss, }; ck_assert(signature_params_equal(value, &expected)); } else { ck_assert(scheme[i]); ck_assert(!value->params); ck_assert_int_eq(scheme[i], value->scheme); } i++; } } enumerator->destroy(enumerator); ck_assert(!scheme[i]); } START_TEST(test_sig_constraints_params) { auth_cfg_t *cfg; cfg = auth_cfg_create(); cfg->add_pubkey_constraints(cfg, sig_constraints_params_tests[_i].constraints, TRUE); check_sig_constraints_params(cfg, AUTH_RULE_IKE_SIGNATURE_SCHEME, sig_constraints_params_tests[_i].sig, sig_constraints_params_tests[_i].p); cfg->destroy(cfg); } END_TEST struct { char *constraints; signature_scheme_t sig[6]; signature_param_types_t p[6]; } sig_constraints_rsa_pss_tests[] = { { "pubkey-sha256", { SIGN_RSA_EMSA_PSS, SIGN_RSA_EMSA_PKCS1_SHA2_256, SIGN_ECDSA_WITH_SHA256_DER, SIGN_ECDSA_256, SIGN_BLISS_WITH_SHA2_256, 0 }, { { .pss = { .hash = HASH_SHA256, .mgf1_hash = HASH_SHA256, .salt_len = HASH_SIZE_SHA256, }}, {}, {}, {}, {}}}, { "rsa-sha256", { SIGN_RSA_EMSA_PSS, SIGN_RSA_EMSA_PKCS1_SHA2_256, 0 }, { { .pss = { .hash = HASH_SHA256, .mgf1_hash = HASH_SHA256, .salt_len = HASH_SIZE_SHA256, }}, {}}}, }; START_TEST(test_sig_constraints_rsa_pss) { auth_cfg_t *cfg; lib->settings->set_bool(lib->settings, "%s.rsa_pss", TRUE, lib->ns); cfg = auth_cfg_create(); cfg->add_pubkey_constraints(cfg, sig_constraints_rsa_pss_tests[_i].constraints, TRUE); check_sig_constraints_params(cfg, AUTH_RULE_IKE_SIGNATURE_SCHEME, sig_constraints_rsa_pss_tests[_i].sig, sig_constraints_rsa_pss_tests[_i].p); cfg->destroy(cfg); } END_TEST Suite *auth_cfg_suite_create() { Suite *s; TCase *tc; s = suite_create("auth_cfg"); tc = tcase_create("add_pubkey_constraints"); tcase_add_loop_test(tc, test_sig_constraints, 0, countof(sig_constraints_tests)); tcase_add_loop_test(tc, test_ike_constraints_fallback, 0, countof(sig_constraints_tests)); suite_add_tcase(s, tc); tc = tcase_create("add_pubkey_constraints parameters"); tcase_add_loop_test(tc, test_sig_constraints_params, 0, countof(sig_constraints_params_tests)); tcase_add_loop_test(tc, test_sig_constraints_rsa_pss, 0, countof(sig_constraints_rsa_pss_tests)); suite_add_tcase(s, tc); return s; }