File:  [ELWIX - Embedded LightWeight unIX -] / embedaddon / sudo / zlib / deflate.c
Revision 1.1.1.2 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Mon Jul 22 10:46:14 2013 UTC (10 years, 11 months ago) by misho
Branches: sudo, MAIN
CVS tags: v1_8_8p0, v1_8_8, v1_8_7p0, v1_8_7, v1_8_5p1, v1_8_10p3_0, v1_8_10p3, HEAD
1.8.7

    1: /* deflate.c -- compress data using the deflation algorithm
    2:  * Copyright (C) 1995-2012 Jean-loup Gailly and Mark Adler
    3:  * For conditions of distribution and use, see copyright notice in zlib.h
    4:  */
    5: 
    6: /*
    7:  *  ALGORITHM
    8:  *
    9:  *      The "deflation" process depends on being able to identify portions
   10:  *      of the input text which are identical to earlier input (within a
   11:  *      sliding window trailing behind the input currently being processed).
   12:  *
   13:  *      The most straightforward technique turns out to be the fastest for
   14:  *      most input files: try all possible matches and select the longest.
   15:  *      The key feature of this algorithm is that insertions into the string
   16:  *      dictionary are very simple and thus fast, and deletions are avoided
   17:  *      completely. Insertions are performed at each input character, whereas
   18:  *      string matches are performed only when the previous match ends. So it
   19:  *      is preferable to spend more time in matches to allow very fast string
   20:  *      insertions and avoid deletions. The matching algorithm for small
   21:  *      strings is inspired from that of Rabin & Karp. A brute force approach
   22:  *      is used to find longer strings when a small match has been found.
   23:  *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
   24:  *      (by Leonid Broukhis).
   25:  *         A previous version of this file used a more sophisticated algorithm
   26:  *      (by Fiala and Greene) which is guaranteed to run in linear amortized
   27:  *      time, but has a larger average cost, uses more memory and is patented.
   28:  *      However the F&G algorithm may be faster for some highly redundant
   29:  *      files if the parameter max_chain_length (described below) is too large.
   30:  *
   31:  *  ACKNOWLEDGEMENTS
   32:  *
   33:  *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
   34:  *      I found it in 'freeze' written by Leonid Broukhis.
   35:  *      Thanks to many people for bug reports and testing.
   36:  *
   37:  *  REFERENCES
   38:  *
   39:  *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
   40:  *      Available in http://tools.ietf.org/html/rfc1951
   41:  *
   42:  *      A description of the Rabin and Karp algorithm is given in the book
   43:  *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
   44:  *
   45:  *      Fiala,E.R., and Greene,D.H.
   46:  *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
   47:  *
   48:  */
   49: 
   50: /* @(#) $Id: deflate.c,v 1.1.1.2 2013/07/22 10:46:14 misho Exp $ */
   51: 
   52: #include "deflate.h"
   53: 
   54: const char deflate_copyright[] =
   55:    " deflate 1.2.6 Copyright 1995-2012 Jean-loup Gailly and Mark Adler ";
   56: /*
   57:   If you use the zlib library in a product, an acknowledgment is welcome
   58:   in the documentation of your product. If for some reason you cannot
   59:   include such an acknowledgment, I would appreciate that you keep this
   60:   copyright string in the executable of your product.
   61:  */
   62: 
   63: /* ===========================================================================
   64:  *  Function prototypes.
   65:  */
   66: typedef enum {
   67:     need_more,      /* block not completed, need more input or more output */
   68:     block_done,     /* block flush performed */
   69:     finish_started, /* finish started, need only more output at next deflate */
   70:     finish_done     /* finish done, accept no more input or output */
   71: } block_state;
   72: 
   73: typedef block_state (*compress_func) OF((deflate_state *s, int flush));
   74: /* Compression function. Returns the block state after the call. */
   75: 
   76: local void fill_window    OF((deflate_state *s));
   77: local block_state deflate_stored OF((deflate_state *s, int flush));
   78: local block_state deflate_fast   OF((deflate_state *s, int flush));
   79: #ifndef FASTEST
   80: local block_state deflate_slow   OF((deflate_state *s, int flush));
   81: #endif
   82: local block_state deflate_rle    OF((deflate_state *s, int flush));
   83: local block_state deflate_huff   OF((deflate_state *s, int flush));
   84: local void lm_init        OF((deflate_state *s));
   85: local void putShortMSB    OF((deflate_state *s, uInt b));
   86: local void flush_pending  OF((z_streamp strm));
   87: local int read_buf        OF((z_streamp strm, Bytef *buf, unsigned size));
   88: #ifdef ASMV
   89:       void match_init OF((void)); /* asm code initialization */
   90:       uInt longest_match  OF((deflate_state *s, IPos cur_match));
   91: #else
   92: local uInt longest_match  OF((deflate_state *s, IPos cur_match));
   93: #endif
   94: 
   95: #ifdef DEBUG
   96: local  void check_match OF((deflate_state *s, IPos start, IPos match,
   97:                             int length));
   98: #endif
   99: 
  100: /* ===========================================================================
  101:  * Local data
  102:  */
  103: 
  104: #define NIL 0
  105: /* Tail of hash chains */
  106: 
  107: #ifndef TOO_FAR
  108: #  define TOO_FAR 4096
  109: #endif
  110: /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
  111: 
  112: /* Values for max_lazy_match, good_match and max_chain_length, depending on
  113:  * the desired pack level (0..9). The values given below have been tuned to
  114:  * exclude worst case performance for pathological files. Better values may be
  115:  * found for specific files.
  116:  */
  117: typedef struct config_s {
  118:    ush good_length; /* reduce lazy search above this match length */
  119:    ush max_lazy;    /* do not perform lazy search above this match length */
  120:    ush nice_length; /* quit search above this match length */
  121:    ush max_chain;
  122:    compress_func func;
  123: } config;
  124: 
  125: #ifdef FASTEST
  126: local const config configuration_table[2] = {
  127: /*      good lazy nice chain */
  128: /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
  129: /* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */
  130: #else
  131: local const config configuration_table[10] = {
  132: /*      good lazy nice chain */
  133: /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
  134: /* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches */
  135: /* 2 */ {4,    5, 16,    8, deflate_fast},
  136: /* 3 */ {4,    6, 32,   32, deflate_fast},
  137: 
  138: /* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
  139: /* 5 */ {8,   16, 32,   32, deflate_slow},
  140: /* 6 */ {8,   16, 128, 128, deflate_slow},
  141: /* 7 */ {8,   32, 128, 256, deflate_slow},
  142: /* 8 */ {32, 128, 258, 1024, deflate_slow},
  143: /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
  144: #endif
  145: 
  146: /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
  147:  * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
  148:  * meaning.
  149:  */
  150: 
  151: #define EQUAL 0
  152: /* result of memcmp for equal strings */
  153: 
  154: #ifndef NO_DUMMY_DECL
  155: struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
  156: #endif
  157: 
  158: /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
  159: #define RANK(f) (((f) << 1) - ((f) > 4 ? 9 : 0))
  160: 
  161: /* ===========================================================================
  162:  * Update a hash value with the given input byte
  163:  * IN  assertion: all calls to to UPDATE_HASH are made with consecutive
  164:  *    input characters, so that a running hash key can be computed from the
  165:  *    previous key instead of complete recalculation each time.
  166:  */
  167: #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
  168: 
  169: 
  170: /* ===========================================================================
  171:  * Insert string str in the dictionary and set match_head to the previous head
  172:  * of the hash chain (the most recent string with same hash key). Return
  173:  * the previous length of the hash chain.
  174:  * If this file is compiled with -DFASTEST, the compression level is forced
  175:  * to 1, and no hash chains are maintained.
  176:  * IN  assertion: all calls to to INSERT_STRING are made with consecutive
  177:  *    input characters and the first MIN_MATCH bytes of str are valid
  178:  *    (except for the last MIN_MATCH-1 bytes of the input file).
  179:  */
  180: #ifdef FASTEST
  181: #define INSERT_STRING(s, str, match_head) \
  182:    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
  183:     match_head = s->head[s->ins_h], \
  184:     s->head[s->ins_h] = (Pos)(str))
  185: #else
  186: #define INSERT_STRING(s, str, match_head) \
  187:    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
  188:     match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
  189:     s->head[s->ins_h] = (Pos)(str))
  190: #endif
  191: 
  192: /* ===========================================================================
  193:  * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
  194:  * prev[] will be initialized on the fly.
  195:  */
  196: #define CLEAR_HASH(s) \
  197:     s->head[s->hash_size-1] = NIL; \
  198:     zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
  199: 
  200: /* ========================================================================= */
  201: int ZEXPORT deflateInit_(strm, level, version, stream_size)
  202:     z_streamp strm;
  203:     int level;
  204:     const char *version;
  205:     int stream_size;
  206: {
  207:     return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
  208:                          Z_DEFAULT_STRATEGY, version, stream_size);
  209:     /* To do: ignore strm->next_in if we use it as window */
  210: }
  211: 
  212: /* ========================================================================= */
  213: int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
  214:                   version, stream_size)
  215:     z_streamp strm;
  216:     int  level;
  217:     int  method;
  218:     int  windowBits;
  219:     int  memLevel;
  220:     int  strategy;
  221:     const char *version;
  222:     int stream_size;
  223: {
  224:     deflate_state *s;
  225:     int wrap = 1;
  226:     static const char my_version[] = ZLIB_VERSION;
  227: 
  228:     ushf *overlay;
  229:     /* We overlay pending_buf and d_buf+l_buf. This works since the average
  230:      * output size for (length,distance) codes is <= 24 bits.
  231:      */
  232: 
  233:     if (version == Z_NULL || version[0] != my_version[0] ||
  234:         stream_size != sizeof(z_stream)) {
  235:         return Z_VERSION_ERROR;
  236:     }
  237:     if (strm == Z_NULL) return Z_STREAM_ERROR;
  238: 
  239:     strm->msg = Z_NULL;
  240:     if (strm->zalloc == (alloc_func)0) {
  241: #ifdef Z_SOLO
  242:         return Z_STREAM_ERROR;
  243: #else
  244:         strm->zalloc = zcalloc;
  245:         strm->opaque = (voidpf)0;
  246: #endif
  247:     }
  248:     if (strm->zfree == (free_func)0)
  249: #ifdef Z_SOLO
  250:         return Z_STREAM_ERROR;
  251: #else
  252:         strm->zfree = zcfree;
  253: #endif
  254: 
  255: #ifdef FASTEST
  256:     if (level != 0) level = 1;
  257: #else
  258:     if (level == Z_DEFAULT_COMPRESSION) level = 6;
  259: #endif
  260: 
  261:     if (windowBits < 0) { /* suppress zlib wrapper */
  262:         wrap = 0;
  263:         windowBits = -windowBits;
  264:     }
  265: #ifdef GZIP
  266:     else if (windowBits > 15) {
  267:         wrap = 2;       /* write gzip wrapper instead */
  268:         windowBits -= 16;
  269:     }
  270: #endif
  271:     if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
  272:         windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
  273:         strategy < 0 || strategy > Z_FIXED) {
  274:         return Z_STREAM_ERROR;
  275:     }
  276:     if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */
  277:     s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
  278:     if (s == Z_NULL) return Z_MEM_ERROR;
  279:     strm->state = (struct internal_state FAR *)s;
  280:     s->strm = strm;
  281: 
  282:     s->wrap = wrap;
  283:     s->gzhead = Z_NULL;
  284:     s->w_bits = windowBits;
  285:     s->w_size = 1 << s->w_bits;
  286:     s->w_mask = s->w_size - 1;
  287: 
  288:     s->hash_bits = memLevel + 7;
  289:     s->hash_size = 1 << s->hash_bits;
  290:     s->hash_mask = s->hash_size - 1;
  291:     s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
  292: 
  293:     s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
  294:     s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
  295:     s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
  296: 
  297:     s->high_water = 0;      /* nothing written to s->window yet */
  298: 
  299:     s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
  300: 
  301:     overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
  302:     s->pending_buf = (uchf *) overlay;
  303:     s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
  304: 
  305:     if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
  306:         s->pending_buf == Z_NULL) {
  307:         s->status = FINISH_STATE;
  308:         strm->msg = (char*)ERR_MSG(Z_MEM_ERROR);
  309:         deflateEnd (strm);
  310:         return Z_MEM_ERROR;
  311:     }
  312:     s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
  313:     s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
  314: 
  315:     s->level = level;
  316:     s->strategy = strategy;
  317:     s->method = (Byte)method;
  318: 
  319:     return deflateReset(strm);
  320: }
  321: 
  322: /* ========================================================================= */
  323: int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
  324:     z_streamp strm;
  325:     const Bytef *dictionary;
  326:     uInt  dictLength;
  327: {
  328:     deflate_state *s;
  329:     uInt str, n;
  330:     int wrap;
  331:     unsigned avail;
  332:     unsigned char *next;
  333: 
  334:     if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL)
  335:         return Z_STREAM_ERROR;
  336:     s = strm->state;
  337:     wrap = s->wrap;
  338:     if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
  339:         return Z_STREAM_ERROR;
  340: 
  341:     /* when using zlib wrappers, compute Adler-32 for provided dictionary */
  342:     if (wrap == 1)
  343:         strm->adler = adler32(strm->adler, dictionary, dictLength);
  344:     s->wrap = 0;                    /* avoid computing Adler-32 in read_buf */
  345: 
  346:     /* if dictionary would fill window, just replace the history */
  347:     if (dictLength >= s->w_size) {
  348:         if (wrap == 0) {            /* already empty otherwise */
  349:             CLEAR_HASH(s);
  350:             s->strstart = 0;
  351:             s->block_start = 0L;
  352:             s->insert = 0;
  353:         }
  354:         dictionary += dictLength - s->w_size;  /* use the tail */
  355:         dictLength = s->w_size;
  356:     }
  357: 
  358:     /* insert dictionary into window and hash */
  359:     avail = strm->avail_in;
  360:     next = strm->next_in;
  361:     strm->avail_in = dictLength;
  362:     strm->next_in = (Bytef *)dictionary;
  363:     fill_window(s);
  364:     while (s->lookahead >= MIN_MATCH) {
  365:         str = s->strstart;
  366:         n = s->lookahead - (MIN_MATCH-1);
  367:         do {
  368:             UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
  369: #ifndef FASTEST
  370:             s->prev[str & s->w_mask] = s->head[s->ins_h];
  371: #endif
  372:             s->head[s->ins_h] = (Pos)str;
  373:             str++;
  374:         } while (--n);
  375:         s->strstart = str;
  376:         s->lookahead = MIN_MATCH-1;
  377:         fill_window(s);
  378:     }
  379:     s->strstart += s->lookahead;
  380:     s->block_start = (long)s->strstart;
  381:     s->insert = s->lookahead;
  382:     s->lookahead = 0;
  383:     s->match_length = s->prev_length = MIN_MATCH-1;
  384:     s->match_available = 0;
  385:     strm->next_in = next;
  386:     strm->avail_in = avail;
  387:     s->wrap = wrap;
  388:     return Z_OK;
  389: }
  390: 
  391: /* ========================================================================= */
  392: int ZEXPORT deflateResetKeep (strm)
  393:     z_streamp strm;
  394: {
  395:     deflate_state *s;
  396: 
  397:     if (strm == Z_NULL || strm->state == Z_NULL ||
  398:         strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) {
  399:         return Z_STREAM_ERROR;
  400:     }
  401: 
  402:     strm->total_in = strm->total_out = 0;
  403:     strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
  404:     strm->data_type = Z_UNKNOWN;
  405: 
  406:     s = (deflate_state *)strm->state;
  407:     s->pending = 0;
  408:     s->pending_out = s->pending_buf;
  409: 
  410:     if (s->wrap < 0) {
  411:         s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
  412:     }
  413:     s->status = s->wrap ? INIT_STATE : BUSY_STATE;
  414:     strm->adler =
  415: #ifdef GZIP
  416:         s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
  417: #endif
  418:         adler32(0L, Z_NULL, 0);
  419:     s->last_flush = Z_NO_FLUSH;
  420: 
  421:     _tr_init(s);
  422: 
  423:     return Z_OK;
  424: }
  425: 
  426: /* ========================================================================= */
  427: int ZEXPORT deflateReset (strm)
  428:     z_streamp strm;
  429: {
  430:     int ret;
  431: 
  432:     ret = deflateResetKeep(strm);
  433:     if (ret == Z_OK)
  434:         lm_init(strm->state);
  435:     return ret;
  436: }
  437: 
  438: /* ========================================================================= */
  439: int ZEXPORT deflateSetHeader (strm, head)
  440:     z_streamp strm;
  441:     gz_headerp head;
  442: {
  443:     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
  444:     if (strm->state->wrap != 2) return Z_STREAM_ERROR;
  445:     strm->state->gzhead = head;
  446:     return Z_OK;
  447: }
  448: 
  449: /* ========================================================================= */
  450: int ZEXPORT deflatePending (strm, pending, bits)
  451:     unsigned *pending;
  452:     int *bits;
  453:     z_streamp strm;
  454: {
  455:     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
  456:     if (pending != Z_NULL)
  457:         *pending = strm->state->pending;
  458:     if (bits != Z_NULL)
  459:         *bits = strm->state->bi_valid;
  460:     return Z_OK;
  461: }
  462: 
  463: /* ========================================================================= */
  464: int ZEXPORT deflatePrime (strm, bits, value)
  465:     z_streamp strm;
  466:     int bits;
  467:     int value;
  468: {
  469:     deflate_state *s;
  470:     int put;
  471: 
  472:     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
  473:     s = strm->state;
  474:     if ((Bytef *)(s->d_buf) < s->pending_out + ((Buf_size + 7) >> 3))
  475:         return Z_BUF_ERROR;
  476:     do {
  477:         put = Buf_size - s->bi_valid;
  478:         if (put > bits)
  479:             put = bits;
  480:         s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
  481:         s->bi_valid += put;
  482:         _tr_flush_bits(s);
  483:         value >>= put;
  484:         bits -= put;
  485:     } while (bits);
  486:     return Z_OK;
  487: }
  488: 
  489: /* ========================================================================= */
  490: int ZEXPORT deflateParams(strm, level, strategy)
  491:     z_streamp strm;
  492:     int level;
  493:     int strategy;
  494: {
  495:     deflate_state *s;
  496:     compress_func func;
  497:     int err = Z_OK;
  498: 
  499:     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
  500:     s = strm->state;
  501: 
  502: #ifdef FASTEST
  503:     if (level != 0) level = 1;
  504: #else
  505:     if (level == Z_DEFAULT_COMPRESSION) level = 6;
  506: #endif
  507:     if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
  508:         return Z_STREAM_ERROR;
  509:     }
  510:     func = configuration_table[s->level].func;
  511: 
  512:     if ((strategy != s->strategy || func != configuration_table[level].func) &&
  513:         strm->total_in != 0) {
  514:         /* Flush the last buffer: */
  515:         err = deflate(strm, Z_BLOCK);
  516:     }
  517:     if (s->level != level) {
  518:         s->level = level;
  519:         s->max_lazy_match   = configuration_table[level].max_lazy;
  520:         s->good_match       = configuration_table[level].good_length;
  521:         s->nice_match       = configuration_table[level].nice_length;
  522:         s->max_chain_length = configuration_table[level].max_chain;
  523:     }
  524:     s->strategy = strategy;
  525:     return err;
  526: }
  527: 
  528: /* ========================================================================= */
  529: int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
  530:     z_streamp strm;
  531:     int good_length;
  532:     int max_lazy;
  533:     int nice_length;
  534:     int max_chain;
  535: {
  536:     deflate_state *s;
  537: 
  538:     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
  539:     s = strm->state;
  540:     s->good_match = good_length;
  541:     s->max_lazy_match = max_lazy;
  542:     s->nice_match = nice_length;
  543:     s->max_chain_length = max_chain;
  544:     return Z_OK;
  545: }
  546: 
  547: /* =========================================================================
  548:  * For the default windowBits of 15 and memLevel of 8, this function returns
  549:  * a close to exact, as well as small, upper bound on the compressed size.
  550:  * They are coded as constants here for a reason--if the #define's are
  551:  * changed, then this function needs to be changed as well.  The return
  552:  * value for 15 and 8 only works for those exact settings.
  553:  *
  554:  * For any setting other than those defaults for windowBits and memLevel,
  555:  * the value returned is a conservative worst case for the maximum expansion
  556:  * resulting from using fixed blocks instead of stored blocks, which deflate
  557:  * can emit on compressed data for some combinations of the parameters.
  558:  *
  559:  * This function could be more sophisticated to provide closer upper bounds for
  560:  * every combination of windowBits and memLevel.  But even the conservative
  561:  * upper bound of about 14% expansion does not seem onerous for output buffer
  562:  * allocation.
  563:  */
  564: uLong ZEXPORT deflateBound(strm, sourceLen)
  565:     z_streamp strm;
  566:     uLong sourceLen;
  567: {
  568:     deflate_state *s;
  569:     uLong complen, wraplen;
  570:     Bytef *str;
  571: 
  572:     /* conservative upper bound for compressed data */
  573:     complen = sourceLen +
  574:               ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5;
  575: 
  576:     /* if can't get parameters, return conservative bound plus zlib wrapper */
  577:     if (strm == Z_NULL || strm->state == Z_NULL)
  578:         return complen + 6;
  579: 
  580:     /* compute wrapper length */
  581:     s = strm->state;
  582:     switch (s->wrap) {
  583:     case 0:                                 /* raw deflate */
  584:         wraplen = 0;
  585:         break;
  586:     case 1:                                 /* zlib wrapper */
  587:         wraplen = 6 + (s->strstart ? 4 : 0);
  588:         break;
  589:     case 2:                                 /* gzip wrapper */
  590:         wraplen = 18;
  591:         if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */
  592:             if (s->gzhead->extra != Z_NULL)
  593:                 wraplen += 2 + s->gzhead->extra_len;
  594:             str = s->gzhead->name;
  595:             if (str != Z_NULL)
  596:                 do {
  597:                     wraplen++;
  598:                 } while (*str++);
  599:             str = s->gzhead->comment;
  600:             if (str != Z_NULL)
  601:                 do {
  602:                     wraplen++;
  603:                 } while (*str++);
  604:             if (s->gzhead->hcrc)
  605:                 wraplen += 2;
  606:         }
  607:         break;
  608:     default:                                /* for compiler happiness */
  609:         wraplen = 6;
  610:     }
  611: 
  612:     /* if not default parameters, return conservative bound */
  613:     if (s->w_bits != 15 || s->hash_bits != 8 + 7)
  614:         return complen + wraplen;
  615: 
  616:     /* default settings: return tight bound for that case */
  617:     return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
  618:            (sourceLen >> 25) + 13 - 6 + wraplen;
  619: }
  620: 
  621: /* =========================================================================
  622:  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
  623:  * IN assertion: the stream state is correct and there is enough room in
  624:  * pending_buf.
  625:  */
  626: local void putShortMSB (s, b)
  627:     deflate_state *s;
  628:     uInt b;
  629: {
  630:     put_byte(s, (Byte)(b >> 8));
  631:     put_byte(s, (Byte)(b & 0xff));
  632: }
  633: 
  634: /* =========================================================================
  635:  * Flush as much pending output as possible. All deflate() output goes
  636:  * through this function so some applications may wish to modify it
  637:  * to avoid allocating a large strm->next_out buffer and copying into it.
  638:  * (See also read_buf()).
  639:  */
  640: local void flush_pending(strm)
  641:     z_streamp strm;
  642: {
  643:     unsigned len;
  644:     deflate_state *s = strm->state;
  645: 
  646:     _tr_flush_bits(s);
  647:     len = s->pending;
  648:     if (len > strm->avail_out) len = strm->avail_out;
  649:     if (len == 0) return;
  650: 
  651:     zmemcpy(strm->next_out, s->pending_out, len);
  652:     strm->next_out  += len;
  653:     s->pending_out  += len;
  654:     strm->total_out += len;
  655:     strm->avail_out  -= len;
  656:     s->pending -= len;
  657:     if (s->pending == 0) {
  658:         s->pending_out = s->pending_buf;
  659:     }
  660: }
  661: 
  662: /* ========================================================================= */
  663: int ZEXPORT deflate (strm, flush)
  664:     z_streamp strm;
  665:     int flush;
  666: {
  667:     int old_flush; /* value of flush param for previous deflate call */
  668:     deflate_state *s;
  669: 
  670:     if (strm == Z_NULL || strm->state == Z_NULL ||
  671:         flush > Z_BLOCK || flush < 0) {
  672:         return Z_STREAM_ERROR;
  673:     }
  674:     s = strm->state;
  675: 
  676:     if (strm->next_out == Z_NULL ||
  677:         (strm->next_in == Z_NULL && strm->avail_in != 0) ||
  678:         (s->status == FINISH_STATE && flush != Z_FINISH)) {
  679:         ERR_RETURN(strm, Z_STREAM_ERROR);
  680:     }
  681:     if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
  682: 
  683:     s->strm = strm; /* just in case */
  684:     old_flush = s->last_flush;
  685:     s->last_flush = flush;
  686: 
  687:     /* Write the header */
  688:     if (s->status == INIT_STATE) {
  689: #ifdef GZIP
  690:         if (s->wrap == 2) {
  691:             strm->adler = crc32(0L, Z_NULL, 0);
  692:             put_byte(s, 31);
  693:             put_byte(s, 139);
  694:             put_byte(s, 8);
  695:             if (s->gzhead == Z_NULL) {
  696:                 put_byte(s, 0);
  697:                 put_byte(s, 0);
  698:                 put_byte(s, 0);
  699:                 put_byte(s, 0);
  700:                 put_byte(s, 0);
  701:                 put_byte(s, s->level == 9 ? 2 :
  702:                             (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
  703:                              4 : 0));
  704:                 put_byte(s, OS_CODE);
  705:                 s->status = BUSY_STATE;
  706:             }
  707:             else {
  708:                 put_byte(s, (s->gzhead->text ? 1 : 0) +
  709:                             (s->gzhead->hcrc ? 2 : 0) +
  710:                             (s->gzhead->extra == Z_NULL ? 0 : 4) +
  711:                             (s->gzhead->name == Z_NULL ? 0 : 8) +
  712:                             (s->gzhead->comment == Z_NULL ? 0 : 16)
  713:                         );
  714:                 put_byte(s, (Byte)(s->gzhead->time & 0xff));
  715:                 put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
  716:                 put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
  717:                 put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
  718:                 put_byte(s, s->level == 9 ? 2 :
  719:                             (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
  720:                              4 : 0));
  721:                 put_byte(s, s->gzhead->os & 0xff);
  722:                 if (s->gzhead->extra != Z_NULL) {
  723:                     put_byte(s, s->gzhead->extra_len & 0xff);
  724:                     put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
  725:                 }
  726:                 if (s->gzhead->hcrc)
  727:                     strm->adler = crc32(strm->adler, s->pending_buf,
  728:                                         s->pending);
  729:                 s->gzindex = 0;
  730:                 s->status = EXTRA_STATE;
  731:             }
  732:         }
  733:         else
  734: #endif
  735:         {
  736:             uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
  737:             uInt level_flags;
  738: 
  739:             if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
  740:                 level_flags = 0;
  741:             else if (s->level < 6)
  742:                 level_flags = 1;
  743:             else if (s->level == 6)
  744:                 level_flags = 2;
  745:             else
  746:                 level_flags = 3;
  747:             header |= (level_flags << 6);
  748:             if (s->strstart != 0) header |= PRESET_DICT;
  749:             header += 31 - (header % 31);
  750: 
  751:             s->status = BUSY_STATE;
  752:             putShortMSB(s, header);
  753: 
  754:             /* Save the adler32 of the preset dictionary: */
  755:             if (s->strstart != 0) {
  756:                 putShortMSB(s, (uInt)(strm->adler >> 16));
  757:                 putShortMSB(s, (uInt)(strm->adler & 0xffff));
  758:             }
  759:             strm->adler = adler32(0L, Z_NULL, 0);
  760:         }
  761:     }
  762: #ifdef GZIP
  763:     if (s->status == EXTRA_STATE) {
  764:         if (s->gzhead->extra != Z_NULL) {
  765:             uInt beg = s->pending;  /* start of bytes to update crc */
  766: 
  767:             while (s->gzindex < (s->gzhead->extra_len & 0xffff)) {
  768:                 if (s->pending == s->pending_buf_size) {
  769:                     if (s->gzhead->hcrc && s->pending > beg)
  770:                         strm->adler = crc32(strm->adler, s->pending_buf + beg,
  771:                                             s->pending - beg);
  772:                     flush_pending(strm);
  773:                     beg = s->pending;
  774:                     if (s->pending == s->pending_buf_size)
  775:                         break;
  776:                 }
  777:                 put_byte(s, s->gzhead->extra[s->gzindex]);
  778:                 s->gzindex++;
  779:             }
  780:             if (s->gzhead->hcrc && s->pending > beg)
  781:                 strm->adler = crc32(strm->adler, s->pending_buf + beg,
  782:                                     s->pending - beg);
  783:             if (s->gzindex == s->gzhead->extra_len) {
  784:                 s->gzindex = 0;
  785:                 s->status = NAME_STATE;
  786:             }
  787:         }
  788:         else
  789:             s->status = NAME_STATE;
  790:     }
  791:     if (s->status == NAME_STATE) {
  792:         if (s->gzhead->name != Z_NULL) {
  793:             uInt beg = s->pending;  /* start of bytes to update crc */
  794:             int val;
  795: 
  796:             do {
  797:                 if (s->pending == s->pending_buf_size) {
  798:                     if (s->gzhead->hcrc && s->pending > beg)
  799:                         strm->adler = crc32(strm->adler, s->pending_buf + beg,
  800:                                             s->pending - beg);
  801:                     flush_pending(strm);
  802:                     beg = s->pending;
  803:                     if (s->pending == s->pending_buf_size) {
  804:                         val = 1;
  805:                         break;
  806:                     }
  807:                 }
  808:                 val = s->gzhead->name[s->gzindex++];
  809:                 put_byte(s, val);
  810:             } while (val != 0);
  811:             if (s->gzhead->hcrc && s->pending > beg)
  812:                 strm->adler = crc32(strm->adler, s->pending_buf + beg,
  813:                                     s->pending - beg);
  814:             if (val == 0) {
  815:                 s->gzindex = 0;
  816:                 s->status = COMMENT_STATE;
  817:             }
  818:         }
  819:         else
  820:             s->status = COMMENT_STATE;
  821:     }
  822:     if (s->status == COMMENT_STATE) {
  823:         if (s->gzhead->comment != Z_NULL) {
  824:             uInt beg = s->pending;  /* start of bytes to update crc */
  825:             int val;
  826: 
  827:             do {
  828:                 if (s->pending == s->pending_buf_size) {
  829:                     if (s->gzhead->hcrc && s->pending > beg)
  830:                         strm->adler = crc32(strm->adler, s->pending_buf + beg,
  831:                                             s->pending - beg);
  832:                     flush_pending(strm);
  833:                     beg = s->pending;
  834:                     if (s->pending == s->pending_buf_size) {
  835:                         val = 1;
  836:                         break;
  837:                     }
  838:                 }
  839:                 val = s->gzhead->comment[s->gzindex++];
  840:                 put_byte(s, val);
  841:             } while (val != 0);
  842:             if (s->gzhead->hcrc && s->pending > beg)
  843:                 strm->adler = crc32(strm->adler, s->pending_buf + beg,
  844:                                     s->pending - beg);
  845:             if (val == 0)
  846:                 s->status = HCRC_STATE;
  847:         }
  848:         else
  849:             s->status = HCRC_STATE;
  850:     }
  851:     if (s->status == HCRC_STATE) {
  852:         if (s->gzhead->hcrc) {
  853:             if (s->pending + 2 > s->pending_buf_size)
  854:                 flush_pending(strm);
  855:             if (s->pending + 2 <= s->pending_buf_size) {
  856:                 put_byte(s, (Byte)(strm->adler & 0xff));
  857:                 put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
  858:                 strm->adler = crc32(0L, Z_NULL, 0);
  859:                 s->status = BUSY_STATE;
  860:             }
  861:         }
  862:         else
  863:             s->status = BUSY_STATE;
  864:     }
  865: #endif
  866: 
  867:     /* Flush as much pending output as possible */
  868:     if (s->pending != 0) {
  869:         flush_pending(strm);
  870:         if (strm->avail_out == 0) {
  871:             /* Since avail_out is 0, deflate will be called again with
  872:              * more output space, but possibly with both pending and
  873:              * avail_in equal to zero. There won't be anything to do,
  874:              * but this is not an error situation so make sure we
  875:              * return OK instead of BUF_ERROR at next call of deflate:
  876:              */
  877:             s->last_flush = -1;
  878:             return Z_OK;
  879:         }
  880: 
  881:     /* Make sure there is something to do and avoid duplicate consecutive
  882:      * flushes. For repeated and useless calls with Z_FINISH, we keep
  883:      * returning Z_STREAM_END instead of Z_BUF_ERROR.
  884:      */
  885:     } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
  886:                flush != Z_FINISH) {
  887:         ERR_RETURN(strm, Z_BUF_ERROR);
  888:     }
  889: 
  890:     /* User must not provide more input after the first FINISH: */
  891:     if (s->status == FINISH_STATE && strm->avail_in != 0) {
  892:         ERR_RETURN(strm, Z_BUF_ERROR);
  893:     }
  894: 
  895:     /* Start a new block or continue the current one.
  896:      */
  897:     if (strm->avail_in != 0 || s->lookahead != 0 ||
  898:         (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
  899:         block_state bstate;
  900: 
  901:         bstate = s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
  902:                     (s->strategy == Z_RLE ? deflate_rle(s, flush) :
  903:                         (*(configuration_table[s->level].func))(s, flush));
  904: 
  905:         if (bstate == finish_started || bstate == finish_done) {
  906:             s->status = FINISH_STATE;
  907:         }
  908:         if (bstate == need_more || bstate == finish_started) {
  909:             if (strm->avail_out == 0) {
  910:                 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
  911:             }
  912:             return Z_OK;
  913:             /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
  914:              * of deflate should use the same flush parameter to make sure
  915:              * that the flush is complete. So we don't have to output an
  916:              * empty block here, this will be done at next call. This also
  917:              * ensures that for a very small output buffer, we emit at most
  918:              * one empty block.
  919:              */
  920:         }
  921:         if (bstate == block_done) {
  922:             if (flush == Z_PARTIAL_FLUSH) {
  923:                 _tr_align(s);
  924:             } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
  925:                 _tr_stored_block(s, (char*)0, 0L, 0);
  926:                 /* For a full flush, this empty block will be recognized
  927:                  * as a special marker by inflate_sync().
  928:                  */
  929:                 if (flush == Z_FULL_FLUSH) {
  930:                     CLEAR_HASH(s);             /* forget history */
  931:                     if (s->lookahead == 0) {
  932:                         s->strstart = 0;
  933:                         s->block_start = 0L;
  934:                         s->insert = 0;
  935:                     }
  936:                 }
  937:             }
  938:             flush_pending(strm);
  939:             if (strm->avail_out == 0) {
  940:               s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
  941:               return Z_OK;
  942:             }
  943:         }
  944:     }
  945:     Assert(strm->avail_out > 0, "bug2");
  946: 
  947:     if (flush != Z_FINISH) return Z_OK;
  948:     if (s->wrap <= 0) return Z_STREAM_END;
  949: 
  950:     /* Write the trailer */
  951: #ifdef GZIP
  952:     if (s->wrap == 2) {
  953:         put_byte(s, (Byte)(strm->adler & 0xff));
  954:         put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
  955:         put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
  956:         put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
  957:         put_byte(s, (Byte)(strm->total_in & 0xff));
  958:         put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
  959:         put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
  960:         put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
  961:     }
  962:     else
  963: #endif
  964:     {
  965:         putShortMSB(s, (uInt)(strm->adler >> 16));
  966:         putShortMSB(s, (uInt)(strm->adler & 0xffff));
  967:     }
  968:     flush_pending(strm);
  969:     /* If avail_out is zero, the application will call deflate again
  970:      * to flush the rest.
  971:      */
  972:     if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
  973:     return s->pending != 0 ? Z_OK : Z_STREAM_END;
  974: }
  975: 
  976: /* ========================================================================= */
  977: int ZEXPORT deflateEnd (strm)
  978:     z_streamp strm;
  979: {
  980:     int status;
  981: 
  982:     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
  983: 
  984:     status = strm->state->status;
  985:     if (status != INIT_STATE &&
  986:         status != EXTRA_STATE &&
  987:         status != NAME_STATE &&
  988:         status != COMMENT_STATE &&
  989:         status != HCRC_STATE &&
  990:         status != BUSY_STATE &&
  991:         status != FINISH_STATE) {
  992:       return Z_STREAM_ERROR;
  993:     }
  994: 
  995:     /* Deallocate in reverse order of allocations: */
  996:     TRY_FREE(strm, strm->state->pending_buf);
  997:     TRY_FREE(strm, strm->state->head);
  998:     TRY_FREE(strm, strm->state->prev);
  999:     TRY_FREE(strm, strm->state->window);
 1000: 
 1001:     ZFREE(strm, strm->state);
 1002:     strm->state = Z_NULL;
 1003: 
 1004:     return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
 1005: }
 1006: 
 1007: /* =========================================================================
 1008:  * Copy the source state to the destination state.
 1009:  * To simplify the source, this is not supported for 16-bit MSDOS (which
 1010:  * doesn't have enough memory anyway to duplicate compression states).
 1011:  */
 1012: int ZEXPORT deflateCopy (dest, source)
 1013:     z_streamp dest;
 1014:     z_streamp source;
 1015: {
 1016: #ifdef MAXSEG_64K
 1017:     return Z_STREAM_ERROR;
 1018: #else
 1019:     deflate_state *ds;
 1020:     deflate_state *ss;
 1021:     ushf *overlay;
 1022: 
 1023: 
 1024:     if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) {
 1025:         return Z_STREAM_ERROR;
 1026:     }
 1027: 
 1028:     ss = source->state;
 1029: 
 1030:     zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
 1031: 
 1032:     ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
 1033:     if (ds == Z_NULL) return Z_MEM_ERROR;
 1034:     dest->state = (struct internal_state FAR *) ds;
 1035:     zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
 1036:     ds->strm = dest;
 1037: 
 1038:     ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
 1039:     ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
 1040:     ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
 1041:     overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
 1042:     ds->pending_buf = (uchf *) overlay;
 1043: 
 1044:     if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
 1045:         ds->pending_buf == Z_NULL) {
 1046:         deflateEnd (dest);
 1047:         return Z_MEM_ERROR;
 1048:     }
 1049:     /* following zmemcpy do not work for 16-bit MSDOS */
 1050:     zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
 1051:     zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
 1052:     zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
 1053:     zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
 1054: 
 1055:     ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
 1056:     ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
 1057:     ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
 1058: 
 1059:     ds->l_desc.dyn_tree = ds->dyn_ltree;
 1060:     ds->d_desc.dyn_tree = ds->dyn_dtree;
 1061:     ds->bl_desc.dyn_tree = ds->bl_tree;
 1062: 
 1063:     return Z_OK;
 1064: #endif /* MAXSEG_64K */
 1065: }
 1066: 
 1067: /* ===========================================================================
 1068:  * Read a new buffer from the current input stream, update the adler32
 1069:  * and total number of bytes read.  All deflate() input goes through
 1070:  * this function so some applications may wish to modify it to avoid
 1071:  * allocating a large strm->next_in buffer and copying from it.
 1072:  * (See also flush_pending()).
 1073:  */
 1074: local int read_buf(strm, buf, size)
 1075:     z_streamp strm;
 1076:     Bytef *buf;
 1077:     unsigned size;
 1078: {
 1079:     unsigned len = strm->avail_in;
 1080: 
 1081:     if (len > size) len = size;
 1082:     if (len == 0) return 0;
 1083: 
 1084:     strm->avail_in  -= len;
 1085: 
 1086:     zmemcpy(buf, strm->next_in, len);
 1087:     if (strm->state->wrap == 1) {
 1088:         strm->adler = adler32(strm->adler, buf, len);
 1089:     }
 1090: #ifdef GZIP
 1091:     else if (strm->state->wrap == 2) {
 1092:         strm->adler = crc32(strm->adler, buf, len);
 1093:     }
 1094: #endif
 1095:     strm->next_in  += len;
 1096:     strm->total_in += len;
 1097: 
 1098:     return (int)len;
 1099: }
 1100: 
 1101: /* ===========================================================================
 1102:  * Initialize the "longest match" routines for a new zlib stream
 1103:  */
 1104: local void lm_init (s)
 1105:     deflate_state *s;
 1106: {
 1107:     s->window_size = (ulg)2L*s->w_size;
 1108: 
 1109:     CLEAR_HASH(s);
 1110: 
 1111:     /* Set the default configuration parameters:
 1112:      */
 1113:     s->max_lazy_match   = configuration_table[s->level].max_lazy;
 1114:     s->good_match       = configuration_table[s->level].good_length;
 1115:     s->nice_match       = configuration_table[s->level].nice_length;
 1116:     s->max_chain_length = configuration_table[s->level].max_chain;
 1117: 
 1118:     s->strstart = 0;
 1119:     s->block_start = 0L;
 1120:     s->lookahead = 0;
 1121:     s->insert = 0;
 1122:     s->match_length = s->prev_length = MIN_MATCH-1;
 1123:     s->match_available = 0;
 1124:     s->ins_h = 0;
 1125: #ifndef FASTEST
 1126: #ifdef ASMV
 1127:     match_init(); /* initialize the asm code */
 1128: #endif
 1129: #endif
 1130: }
 1131: 
 1132: #ifndef FASTEST
 1133: /* ===========================================================================
 1134:  * Set match_start to the longest match starting at the given string and
 1135:  * return its length. Matches shorter or equal to prev_length are discarded,
 1136:  * in which case the result is equal to prev_length and match_start is
 1137:  * garbage.
 1138:  * IN assertions: cur_match is the head of the hash chain for the current
 1139:  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
 1140:  * OUT assertion: the match length is not greater than s->lookahead.
 1141:  */
 1142: #ifndef ASMV
 1143: /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
 1144:  * match.S. The code will be functionally equivalent.
 1145:  */
 1146: local uInt longest_match(s, cur_match)
 1147:     deflate_state *s;
 1148:     IPos cur_match;                             /* current match */
 1149: {
 1150:     unsigned chain_length = s->max_chain_length;/* max hash chain length */
 1151:     register Bytef *scan = s->window + s->strstart; /* current string */
 1152:     register Bytef *match;                       /* matched string */
 1153:     register int len;                           /* length of current match */
 1154:     int best_len = s->prev_length;              /* best match length so far */
 1155:     int nice_match = s->nice_match;             /* stop if match long enough */
 1156:     IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
 1157:         s->strstart - (IPos)MAX_DIST(s) : NIL;
 1158:     /* Stop when cur_match becomes <= limit. To simplify the code,
 1159:      * we prevent matches with the string of window index 0.
 1160:      */
 1161:     Posf *prev = s->prev;
 1162:     uInt wmask = s->w_mask;
 1163: 
 1164: #ifdef UNALIGNED_OK
 1165:     /* Compare two bytes at a time. Note: this is not always beneficial.
 1166:      * Try with and without -DUNALIGNED_OK to check.
 1167:      */
 1168:     register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
 1169:     register ush scan_start = *(ushf*)scan;
 1170:     register ush scan_end   = *(ushf*)(scan+best_len-1);
 1171: #else
 1172:     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
 1173:     register Byte scan_end1  = scan[best_len-1];
 1174:     register Byte scan_end   = scan[best_len];
 1175: #endif
 1176: 
 1177:     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
 1178:      * It is easy to get rid of this optimization if necessary.
 1179:      */
 1180:     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
 1181: 
 1182:     /* Do not waste too much time if we already have a good match: */
 1183:     if (s->prev_length >= s->good_match) {
 1184:         chain_length >>= 2;
 1185:     }
 1186:     /* Do not look for matches beyond the end of the input. This is necessary
 1187:      * to make deflate deterministic.
 1188:      */
 1189:     if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
 1190: 
 1191:     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
 1192: 
 1193:     do {
 1194:         Assert(cur_match < s->strstart, "no future");
 1195:         match = s->window + cur_match;
 1196: 
 1197:         /* Skip to next match if the match length cannot increase
 1198:          * or if the match length is less than 2.  Note that the checks below
 1199:          * for insufficient lookahead only occur occasionally for performance
 1200:          * reasons.  Therefore uninitialized memory will be accessed, and
 1201:          * conditional jumps will be made that depend on those values.
 1202:          * However the length of the match is limited to the lookahead, so
 1203:          * the output of deflate is not affected by the uninitialized values.
 1204:          */
 1205: #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
 1206:         /* This code assumes sizeof(unsigned short) == 2. Do not use
 1207:          * UNALIGNED_OK if your compiler uses a different size.
 1208:          */
 1209:         if (*(ushf*)(match+best_len-1) != scan_end ||
 1210:             *(ushf*)match != scan_start) continue;
 1211: 
 1212:         /* It is not necessary to compare scan[2] and match[2] since they are
 1213:          * always equal when the other bytes match, given that the hash keys
 1214:          * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
 1215:          * strstart+3, +5, ... up to strstart+257. We check for insufficient
 1216:          * lookahead only every 4th comparison; the 128th check will be made
 1217:          * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
 1218:          * necessary to put more guard bytes at the end of the window, or
 1219:          * to check more often for insufficient lookahead.
 1220:          */
 1221:         Assert(scan[2] == match[2], "scan[2]?");
 1222:         scan++, match++;
 1223:         do {
 1224:         } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
 1225:                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
 1226:                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
 1227:                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
 1228:                  scan < strend);
 1229:         /* The funny "do {}" generates better code on most compilers */
 1230: 
 1231:         /* Here, scan <= window+strstart+257 */
 1232:         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
 1233:         if (*scan == *match) scan++;
 1234: 
 1235:         len = (MAX_MATCH - 1) - (int)(strend-scan);
 1236:         scan = strend - (MAX_MATCH-1);
 1237: 
 1238: #else /* UNALIGNED_OK */
 1239: 
 1240:         if (match[best_len]   != scan_end  ||
 1241:             match[best_len-1] != scan_end1 ||
 1242:             *match            != *scan     ||
 1243:             *++match          != scan[1])      continue;
 1244: 
 1245:         /* The check at best_len-1 can be removed because it will be made
 1246:          * again later. (This heuristic is not always a win.)
 1247:          * It is not necessary to compare scan[2] and match[2] since they
 1248:          * are always equal when the other bytes match, given that
 1249:          * the hash keys are equal and that HASH_BITS >= 8.
 1250:          */
 1251:         scan += 2, match++;
 1252:         Assert(*scan == *match, "match[2]?");
 1253: 
 1254:         /* We check for insufficient lookahead only every 8th comparison;
 1255:          * the 256th check will be made at strstart+258.
 1256:          */
 1257:         do {
 1258:         } while (*++scan == *++match && *++scan == *++match &&
 1259:                  *++scan == *++match && *++scan == *++match &&
 1260:                  *++scan == *++match && *++scan == *++match &&
 1261:                  *++scan == *++match && *++scan == *++match &&
 1262:                  scan < strend);
 1263: 
 1264:         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
 1265: 
 1266:         len = MAX_MATCH - (int)(strend - scan);
 1267:         scan = strend - MAX_MATCH;
 1268: 
 1269: #endif /* UNALIGNED_OK */
 1270: 
 1271:         if (len > best_len) {
 1272:             s->match_start = cur_match;
 1273:             best_len = len;
 1274:             if (len >= nice_match) break;
 1275: #ifdef UNALIGNED_OK
 1276:             scan_end = *(ushf*)(scan+best_len-1);
 1277: #else
 1278:             scan_end1  = scan[best_len-1];
 1279:             scan_end   = scan[best_len];
 1280: #endif
 1281:         }
 1282:     } while ((cur_match = prev[cur_match & wmask]) > limit
 1283:              && --chain_length != 0);
 1284: 
 1285:     if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
 1286:     return s->lookahead;
 1287: }
 1288: #endif /* ASMV */
 1289: 
 1290: #else /* FASTEST */
 1291: 
 1292: /* ---------------------------------------------------------------------------
 1293:  * Optimized version for FASTEST only
 1294:  */
 1295: local uInt longest_match(s, cur_match)
 1296:     deflate_state *s;
 1297:     IPos cur_match;                             /* current match */
 1298: {
 1299:     register Bytef *scan = s->window + s->strstart; /* current string */
 1300:     register Bytef *match;                       /* matched string */
 1301:     register int len;                           /* length of current match */
 1302:     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
 1303: 
 1304:     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
 1305:      * It is easy to get rid of this optimization if necessary.
 1306:      */
 1307:     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
 1308: 
 1309:     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
 1310: 
 1311:     Assert(cur_match < s->strstart, "no future");
 1312: 
 1313:     match = s->window + cur_match;
 1314: 
 1315:     /* Return failure if the match length is less than 2:
 1316:      */
 1317:     if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
 1318: 
 1319:     /* The check at best_len-1 can be removed because it will be made
 1320:      * again later. (This heuristic is not always a win.)
 1321:      * It is not necessary to compare scan[2] and match[2] since they
 1322:      * are always equal when the other bytes match, given that
 1323:      * the hash keys are equal and that HASH_BITS >= 8.
 1324:      */
 1325:     scan += 2, match += 2;
 1326:     Assert(*scan == *match, "match[2]?");
 1327: 
 1328:     /* We check for insufficient lookahead only every 8th comparison;
 1329:      * the 256th check will be made at strstart+258.
 1330:      */
 1331:     do {
 1332:     } while (*++scan == *++match && *++scan == *++match &&
 1333:              *++scan == *++match && *++scan == *++match &&
 1334:              *++scan == *++match && *++scan == *++match &&
 1335:              *++scan == *++match && *++scan == *++match &&
 1336:              scan < strend);
 1337: 
 1338:     Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
 1339: 
 1340:     len = MAX_MATCH - (int)(strend - scan);
 1341: 
 1342:     if (len < MIN_MATCH) return MIN_MATCH - 1;
 1343: 
 1344:     s->match_start = cur_match;
 1345:     return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
 1346: }
 1347: 
 1348: #endif /* FASTEST */
 1349: 
 1350: #ifdef DEBUG
 1351: /* ===========================================================================
 1352:  * Check that the match at match_start is indeed a match.
 1353:  */
 1354: local void check_match(s, start, match, length)
 1355:     deflate_state *s;
 1356:     IPos start, match;
 1357:     int length;
 1358: {
 1359:     /* check that the match is indeed a match */
 1360:     if (zmemcmp(s->window + match,
 1361:                 s->window + start, length) != EQUAL) {
 1362:         fprintf(stderr, " start %u, match %u, length %d\n",
 1363:                 start, match, length);
 1364:         do {
 1365:             fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
 1366:         } while (--length != 0);
 1367:         z_error("invalid match");
 1368:     }
 1369:     if (z_verbose > 1) {
 1370:         fprintf(stderr,"\\[%d,%d]", start-match, length);
 1371:         do { putc(s->window[start++], stderr); } while (--length != 0);
 1372:     }
 1373: }
 1374: #else
 1375: #  define check_match(s, start, match, length)
 1376: #endif /* DEBUG */
 1377: 
 1378: /* ===========================================================================
 1379:  * Fill the window when the lookahead becomes insufficient.
 1380:  * Updates strstart and lookahead.
 1381:  *
 1382:  * IN assertion: lookahead < MIN_LOOKAHEAD
 1383:  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
 1384:  *    At least one byte has been read, or avail_in == 0; reads are
 1385:  *    performed for at least two bytes (required for the zip translate_eol
 1386:  *    option -- not supported here).
 1387:  */
 1388: local void fill_window(s)
 1389:     deflate_state *s;
 1390: {
 1391:     register unsigned n, m;
 1392:     register Posf *p;
 1393:     unsigned more;    /* Amount of free space at the end of the window. */
 1394:     uInt wsize = s->w_size;
 1395: 
 1396:     Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
 1397: 
 1398:     do {
 1399:         more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
 1400: 
 1401:         /* Deal with !@#$% 64K limit: */
 1402:         if (sizeof(int) <= 2) {
 1403:             if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
 1404:                 more = wsize;
 1405: 
 1406:             } else if (more == (unsigned)(-1)) {
 1407:                 /* Very unlikely, but possible on 16 bit machine if
 1408:                  * strstart == 0 && lookahead == 1 (input done a byte at time)
 1409:                  */
 1410:                 more--;
 1411:             }
 1412:         }
 1413: 
 1414:         /* If the window is almost full and there is insufficient lookahead,
 1415:          * move the upper half to the lower one to make room in the upper half.
 1416:          */
 1417:         if (s->strstart >= wsize+MAX_DIST(s)) {
 1418: 
 1419:             zmemcpy(s->window, s->window+wsize, (unsigned)wsize);
 1420:             s->match_start -= wsize;
 1421:             s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
 1422:             s->block_start -= (long) wsize;
 1423: 
 1424:             /* Slide the hash table (could be avoided with 32 bit values
 1425:                at the expense of memory usage). We slide even when level == 0
 1426:                to keep the hash table consistent if we switch back to level > 0
 1427:                later. (Using level 0 permanently is not an optimal usage of
 1428:                zlib, so we don't care about this pathological case.)
 1429:              */
 1430:             n = s->hash_size;
 1431:             p = &s->head[n];
 1432:             do {
 1433:                 m = *--p;
 1434:                 *p = (Pos)(m >= wsize ? m-wsize : NIL);
 1435:             } while (--n);
 1436: 
 1437:             n = wsize;
 1438: #ifndef FASTEST
 1439:             p = &s->prev[n];
 1440:             do {
 1441:                 m = *--p;
 1442:                 *p = (Pos)(m >= wsize ? m-wsize : NIL);
 1443:                 /* If n is not on any hash chain, prev[n] is garbage but
 1444:                  * its value will never be used.
 1445:                  */
 1446:             } while (--n);
 1447: #endif
 1448:             more += wsize;
 1449:         }
 1450:         if (s->strm->avail_in == 0) break;
 1451: 
 1452:         /* If there was no sliding:
 1453:          *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
 1454:          *    more == window_size - lookahead - strstart
 1455:          * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
 1456:          * => more >= window_size - 2*WSIZE + 2
 1457:          * In the BIG_MEM or MMAP case (not yet supported),
 1458:          *   window_size == input_size + MIN_LOOKAHEAD  &&
 1459:          *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
 1460:          * Otherwise, window_size == 2*WSIZE so more >= 2.
 1461:          * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
 1462:          */
 1463:         Assert(more >= 2, "more < 2");
 1464: 
 1465:         n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
 1466:         s->lookahead += n;
 1467: 
 1468:         /* Initialize the hash value now that we have some input: */
 1469:         if (s->lookahead + s->insert >= MIN_MATCH) {
 1470:             uInt str = s->strstart - s->insert;
 1471:             s->ins_h = s->window[str];
 1472:             UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
 1473: #if MIN_MATCH != 3
 1474:             Call UPDATE_HASH() MIN_MATCH-3 more times
 1475: #endif
 1476:             while (s->insert) {
 1477:                 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
 1478: #ifndef FASTEST
 1479:                 s->prev[str & s->w_mask] = s->head[s->ins_h];
 1480: #endif
 1481:                 s->head[s->ins_h] = (Pos)str;
 1482:                 str++;
 1483:                 s->insert--;
 1484:                 if (s->lookahead + s->insert < MIN_MATCH)
 1485:                     break;
 1486:             }
 1487:         }
 1488:         /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
 1489:          * but this is not important since only literal bytes will be emitted.
 1490:          */
 1491: 
 1492:     } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
 1493: 
 1494:     /* If the WIN_INIT bytes after the end of the current data have never been
 1495:      * written, then zero those bytes in order to avoid memory check reports of
 1496:      * the use of uninitialized (or uninitialised as Julian writes) bytes by
 1497:      * the longest match routines.  Update the high water mark for the next
 1498:      * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
 1499:      * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
 1500:      */
 1501:     if (s->high_water < s->window_size) {
 1502:         ulg curr = s->strstart + (ulg)(s->lookahead);
 1503:         ulg init;
 1504: 
 1505:         if (s->high_water < curr) {
 1506:             /* Previous high water mark below current data -- zero WIN_INIT
 1507:              * bytes or up to end of window, whichever is less.
 1508:              */
 1509:             init = s->window_size - curr;
 1510:             if (init > WIN_INIT)
 1511:                 init = WIN_INIT;
 1512:             zmemzero(s->window + curr, (unsigned)init);
 1513:             s->high_water = curr + init;
 1514:         }
 1515:         else if (s->high_water < (ulg)curr + WIN_INIT) {
 1516:             /* High water mark at or above current data, but below current data
 1517:              * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
 1518:              * to end of window, whichever is less.
 1519:              */
 1520:             init = (ulg)curr + WIN_INIT - s->high_water;
 1521:             if (init > s->window_size - s->high_water)
 1522:                 init = s->window_size - s->high_water;
 1523:             zmemzero(s->window + s->high_water, (unsigned)init);
 1524:             s->high_water += init;
 1525:         }
 1526:     }
 1527: 
 1528:     Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
 1529:            "not enough room for search");
 1530: }
 1531: 
 1532: /* ===========================================================================
 1533:  * Flush the current block, with given end-of-file flag.
 1534:  * IN assertion: strstart is set to the end of the current match.
 1535:  */
 1536: #define FLUSH_BLOCK_ONLY(s, last) { \
 1537:    _tr_flush_block(s, (s->block_start >= 0L ? \
 1538:                    (charf *)&s->window[(unsigned)s->block_start] : \
 1539:                    (charf *)Z_NULL), \
 1540:                 (ulg)((long)s->strstart - s->block_start), \
 1541:                 (last)); \
 1542:    s->block_start = s->strstart; \
 1543:    flush_pending(s->strm); \
 1544:    Tracev((stderr,"[FLUSH]")); \
 1545: }
 1546: 
 1547: /* Same but force premature exit if necessary. */
 1548: #define FLUSH_BLOCK(s, last) { \
 1549:    FLUSH_BLOCK_ONLY(s, last); \
 1550:    if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
 1551: }
 1552: 
 1553: /* ===========================================================================
 1554:  * Copy without compression as much as possible from the input stream, return
 1555:  * the current block state.
 1556:  * This function does not insert new strings in the dictionary since
 1557:  * uncompressible data is probably not useful. This function is used
 1558:  * only for the level=0 compression option.
 1559:  * NOTE: this function should be optimized to avoid extra copying from
 1560:  * window to pending_buf.
 1561:  */
 1562: local block_state deflate_stored(s, flush)
 1563:     deflate_state *s;
 1564:     int flush;
 1565: {
 1566:     /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
 1567:      * to pending_buf_size, and each stored block has a 5 byte header:
 1568:      */
 1569:     ulg max_block_size = 0xffff;
 1570:     ulg max_start;
 1571: 
 1572:     if (max_block_size > s->pending_buf_size - 5) {
 1573:         max_block_size = s->pending_buf_size - 5;
 1574:     }
 1575: 
 1576:     /* Copy as much as possible from input to output: */
 1577:     for (;;) {
 1578:         /* Fill the window as much as possible: */
 1579:         if (s->lookahead <= 1) {
 1580: 
 1581:             Assert(s->strstart < s->w_size+MAX_DIST(s) ||
 1582:                    s->block_start >= (long)s->w_size, "slide too late");
 1583: 
 1584:             fill_window(s);
 1585:             if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
 1586: 
 1587:             if (s->lookahead == 0) break; /* flush the current block */
 1588:         }
 1589:         Assert(s->block_start >= 0L, "block gone");
 1590: 
 1591:         s->strstart += s->lookahead;
 1592:         s->lookahead = 0;
 1593: 
 1594:         /* Emit a stored block if pending_buf will be full: */
 1595:         max_start = s->block_start + max_block_size;
 1596:         if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
 1597:             /* strstart == 0 is possible when wraparound on 16-bit machine */
 1598:             s->lookahead = (uInt)(s->strstart - max_start);
 1599:             s->strstart = (uInt)max_start;
 1600:             FLUSH_BLOCK(s, 0);
 1601:         }
 1602:         /* Flush if we may have to slide, otherwise block_start may become
 1603:          * negative and the data will be gone:
 1604:          */
 1605:         if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
 1606:             FLUSH_BLOCK(s, 0);
 1607:         }
 1608:     }
 1609:     s->insert = 0;
 1610:     if (flush == Z_FINISH) {
 1611:         FLUSH_BLOCK(s, 1);
 1612:         return finish_done;
 1613:     }
 1614:     if ((long)s->strstart > s->block_start)
 1615:         FLUSH_BLOCK(s, 0);
 1616:     return block_done;
 1617: }
 1618: 
 1619: /* ===========================================================================
 1620:  * Compress as much as possible from the input stream, return the current
 1621:  * block state.
 1622:  * This function does not perform lazy evaluation of matches and inserts
 1623:  * new strings in the dictionary only for unmatched strings or for short
 1624:  * matches. It is used only for the fast compression options.
 1625:  */
 1626: local block_state deflate_fast(s, flush)
 1627:     deflate_state *s;
 1628:     int flush;
 1629: {
 1630:     IPos hash_head;       /* head of the hash chain */
 1631:     int bflush;           /* set if current block must be flushed */
 1632: 
 1633:     for (;;) {
 1634:         /* Make sure that we always have enough lookahead, except
 1635:          * at the end of the input file. We need MAX_MATCH bytes
 1636:          * for the next match, plus MIN_MATCH bytes to insert the
 1637:          * string following the next match.
 1638:          */
 1639:         if (s->lookahead < MIN_LOOKAHEAD) {
 1640:             fill_window(s);
 1641:             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
 1642:                 return need_more;
 1643:             }
 1644:             if (s->lookahead == 0) break; /* flush the current block */
 1645:         }
 1646: 
 1647:         /* Insert the string window[strstart .. strstart+2] in the
 1648:          * dictionary, and set hash_head to the head of the hash chain:
 1649:          */
 1650:         hash_head = NIL;
 1651:         if (s->lookahead >= MIN_MATCH) {
 1652:             INSERT_STRING(s, s->strstart, hash_head);
 1653:         }
 1654: 
 1655:         /* Find the longest match, discarding those <= prev_length.
 1656:          * At this point we have always match_length < MIN_MATCH
 1657:          */
 1658:         if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
 1659:             /* To simplify the code, we prevent matches with the string
 1660:              * of window index 0 (in particular we have to avoid a match
 1661:              * of the string with itself at the start of the input file).
 1662:              */
 1663:             s->match_length = longest_match (s, hash_head);
 1664:             /* longest_match() sets match_start */
 1665:         }
 1666:         if (s->match_length >= MIN_MATCH) {
 1667:             check_match(s, s->strstart, s->match_start, s->match_length);
 1668: 
 1669:             _tr_tally_dist(s, s->strstart - s->match_start,
 1670:                            s->match_length - MIN_MATCH, bflush);
 1671: 
 1672:             s->lookahead -= s->match_length;
 1673: 
 1674:             /* Insert new strings in the hash table only if the match length
 1675:              * is not too large. This saves time but degrades compression.
 1676:              */
 1677: #ifndef FASTEST
 1678:             if (s->match_length <= s->max_insert_length &&
 1679:                 s->lookahead >= MIN_MATCH) {
 1680:                 s->match_length--; /* string at strstart already in table */
 1681:                 do {
 1682:                     s->strstart++;
 1683:                     INSERT_STRING(s, s->strstart, hash_head);
 1684:                     /* strstart never exceeds WSIZE-MAX_MATCH, so there are
 1685:                      * always MIN_MATCH bytes ahead.
 1686:                      */
 1687:                 } while (--s->match_length != 0);
 1688:                 s->strstart++;
 1689:             } else
 1690: #endif
 1691:             {
 1692:                 s->strstart += s->match_length;
 1693:                 s->match_length = 0;
 1694:                 s->ins_h = s->window[s->strstart];
 1695:                 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
 1696: #if MIN_MATCH != 3
 1697:                 Call UPDATE_HASH() MIN_MATCH-3 more times
 1698: #endif
 1699:                 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
 1700:                  * matter since it will be recomputed at next deflate call.
 1701:                  */
 1702:             }
 1703:         } else {
 1704:             /* No match, output a literal byte */
 1705:             Tracevv((stderr,"%c", s->window[s->strstart]));
 1706:             _tr_tally_lit (s, s->window[s->strstart], bflush);
 1707:             s->lookahead--;
 1708:             s->strstart++;
 1709:         }
 1710:         if (bflush) FLUSH_BLOCK(s, 0);
 1711:     }
 1712:     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
 1713:     if (flush == Z_FINISH) {
 1714:         FLUSH_BLOCK(s, 1);
 1715:         return finish_done;
 1716:     }
 1717:     if (s->last_lit)
 1718:         FLUSH_BLOCK(s, 0);
 1719:     return block_done;
 1720: }
 1721: 
 1722: #ifndef FASTEST
 1723: /* ===========================================================================
 1724:  * Same as above, but achieves better compression. We use a lazy
 1725:  * evaluation for matches: a match is finally adopted only if there is
 1726:  * no better match at the next window position.
 1727:  */
 1728: local block_state deflate_slow(s, flush)
 1729:     deflate_state *s;
 1730:     int flush;
 1731: {
 1732:     IPos hash_head;          /* head of hash chain */
 1733:     int bflush;              /* set if current block must be flushed */
 1734: 
 1735:     /* Process the input block. */
 1736:     for (;;) {
 1737:         /* Make sure that we always have enough lookahead, except
 1738:          * at the end of the input file. We need MAX_MATCH bytes
 1739:          * for the next match, plus MIN_MATCH bytes to insert the
 1740:          * string following the next match.
 1741:          */
 1742:         if (s->lookahead < MIN_LOOKAHEAD) {
 1743:             fill_window(s);
 1744:             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
 1745:                 return need_more;
 1746:             }
 1747:             if (s->lookahead == 0) break; /* flush the current block */
 1748:         }
 1749: 
 1750:         /* Insert the string window[strstart .. strstart+2] in the
 1751:          * dictionary, and set hash_head to the head of the hash chain:
 1752:          */
 1753:         hash_head = NIL;
 1754:         if (s->lookahead >= MIN_MATCH) {
 1755:             INSERT_STRING(s, s->strstart, hash_head);
 1756:         }
 1757: 
 1758:         /* Find the longest match, discarding those <= prev_length.
 1759:          */
 1760:         s->prev_length = s->match_length, s->prev_match = s->match_start;
 1761:         s->match_length = MIN_MATCH-1;
 1762: 
 1763:         if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
 1764:             s->strstart - hash_head <= MAX_DIST(s)) {
 1765:             /* To simplify the code, we prevent matches with the string
 1766:              * of window index 0 (in particular we have to avoid a match
 1767:              * of the string with itself at the start of the input file).
 1768:              */
 1769:             s->match_length = longest_match (s, hash_head);
 1770:             /* longest_match() sets match_start */
 1771: 
 1772:             if (s->match_length <= 5 && (s->strategy == Z_FILTERED
 1773: #if TOO_FAR <= 32767
 1774:                 || (s->match_length == MIN_MATCH &&
 1775:                     s->strstart - s->match_start > TOO_FAR)
 1776: #endif
 1777:                 )) {
 1778: 
 1779:                 /* If prev_match is also MIN_MATCH, match_start is garbage
 1780:                  * but we will ignore the current match anyway.
 1781:                  */
 1782:                 s->match_length = MIN_MATCH-1;
 1783:             }
 1784:         }
 1785:         /* If there was a match at the previous step and the current
 1786:          * match is not better, output the previous match:
 1787:          */
 1788:         if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
 1789:             uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
 1790:             /* Do not insert strings in hash table beyond this. */
 1791: 
 1792:             check_match(s, s->strstart-1, s->prev_match, s->prev_length);
 1793: 
 1794:             _tr_tally_dist(s, s->strstart -1 - s->prev_match,
 1795:                            s->prev_length - MIN_MATCH, bflush);
 1796: 
 1797:             /* Insert in hash table all strings up to the end of the match.
 1798:              * strstart-1 and strstart are already inserted. If there is not
 1799:              * enough lookahead, the last two strings are not inserted in
 1800:              * the hash table.
 1801:              */
 1802:             s->lookahead -= s->prev_length-1;
 1803:             s->prev_length -= 2;
 1804:             do {
 1805:                 if (++s->strstart <= max_insert) {
 1806:                     INSERT_STRING(s, s->strstart, hash_head);
 1807:                 }
 1808:             } while (--s->prev_length != 0);
 1809:             s->match_available = 0;
 1810:             s->match_length = MIN_MATCH-1;
 1811:             s->strstart++;
 1812: 
 1813:             if (bflush) FLUSH_BLOCK(s, 0);
 1814: 
 1815:         } else if (s->match_available) {
 1816:             /* If there was no match at the previous position, output a
 1817:              * single literal. If there was a match but the current match
 1818:              * is longer, truncate the previous match to a single literal.
 1819:              */
 1820:             Tracevv((stderr,"%c", s->window[s->strstart-1]));
 1821:             _tr_tally_lit(s, s->window[s->strstart-1], bflush);
 1822:             if (bflush) {
 1823:                 FLUSH_BLOCK_ONLY(s, 0);
 1824:             }
 1825:             s->strstart++;
 1826:             s->lookahead--;
 1827:             if (s->strm->avail_out == 0) return need_more;
 1828:         } else {
 1829:             /* There is no previous match to compare with, wait for
 1830:              * the next step to decide.
 1831:              */
 1832:             s->match_available = 1;
 1833:             s->strstart++;
 1834:             s->lookahead--;
 1835:         }
 1836:     }
 1837:     Assert (flush != Z_NO_FLUSH, "no flush?");
 1838:     if (s->match_available) {
 1839:         Tracevv((stderr,"%c", s->window[s->strstart-1]));
 1840:         _tr_tally_lit(s, s->window[s->strstart-1], bflush);
 1841:         s->match_available = 0;
 1842:     }
 1843:     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
 1844:     if (flush == Z_FINISH) {
 1845:         FLUSH_BLOCK(s, 1);
 1846:         return finish_done;
 1847:     }
 1848:     if (s->last_lit)
 1849:         FLUSH_BLOCK(s, 0);
 1850:     return block_done;
 1851: }
 1852: #endif /* FASTEST */
 1853: 
 1854: /* ===========================================================================
 1855:  * For Z_RLE, simply look for runs of bytes, generate matches only of distance
 1856:  * one.  Do not maintain a hash table.  (It will be regenerated if this run of
 1857:  * deflate switches away from Z_RLE.)
 1858:  */
 1859: local block_state deflate_rle(s, flush)
 1860:     deflate_state *s;
 1861:     int flush;
 1862: {
 1863:     int bflush;             /* set if current block must be flushed */
 1864:     uInt prev;              /* byte at distance one to match */
 1865:     Bytef *scan, *strend;   /* scan goes up to strend for length of run */
 1866: 
 1867:     for (;;) {
 1868:         /* Make sure that we always have enough lookahead, except
 1869:          * at the end of the input file. We need MAX_MATCH bytes
 1870:          * for the longest run, plus one for the unrolled loop.
 1871:          */
 1872:         if (s->lookahead <= MAX_MATCH) {
 1873:             fill_window(s);
 1874:             if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
 1875:                 return need_more;
 1876:             }
 1877:             if (s->lookahead == 0) break; /* flush the current block */
 1878:         }
 1879: 
 1880:         /* See how many times the previous byte repeats */
 1881:         s->match_length = 0;
 1882:         if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
 1883:             scan = s->window + s->strstart - 1;
 1884:             prev = *scan;
 1885:             if (prev == *++scan && prev == *++scan && prev == *++scan) {
 1886:                 strend = s->window + s->strstart + MAX_MATCH;
 1887:                 do {
 1888:                 } while (prev == *++scan && prev == *++scan &&
 1889:                          prev == *++scan && prev == *++scan &&
 1890:                          prev == *++scan && prev == *++scan &&
 1891:                          prev == *++scan && prev == *++scan &&
 1892:                          scan < strend);
 1893:                 s->match_length = MAX_MATCH - (int)(strend - scan);
 1894:                 if (s->match_length > s->lookahead)
 1895:                     s->match_length = s->lookahead;
 1896:             }
 1897:             Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan");
 1898:         }
 1899: 
 1900:         /* Emit match if have run of MIN_MATCH or longer, else emit literal */
 1901:         if (s->match_length >= MIN_MATCH) {
 1902:             check_match(s, s->strstart, s->strstart - 1, s->match_length);
 1903: 
 1904:             _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
 1905: 
 1906:             s->lookahead -= s->match_length;
 1907:             s->strstart += s->match_length;
 1908:             s->match_length = 0;
 1909:         } else {
 1910:             /* No match, output a literal byte */
 1911:             Tracevv((stderr,"%c", s->window[s->strstart]));
 1912:             _tr_tally_lit (s, s->window[s->strstart], bflush);
 1913:             s->lookahead--;
 1914:             s->strstart++;
 1915:         }
 1916:         if (bflush) FLUSH_BLOCK(s, 0);
 1917:     }
 1918:     s->insert = 0;
 1919:     if (flush == Z_FINISH) {
 1920:         FLUSH_BLOCK(s, 1);
 1921:         return finish_done;
 1922:     }
 1923:     if (s->last_lit)
 1924:         FLUSH_BLOCK(s, 0);
 1925:     return block_done;
 1926: }
 1927: 
 1928: /* ===========================================================================
 1929:  * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
 1930:  * (It will be regenerated if this run of deflate switches away from Huffman.)
 1931:  */
 1932: local block_state deflate_huff(s, flush)
 1933:     deflate_state *s;
 1934:     int flush;
 1935: {
 1936:     int bflush;             /* set if current block must be flushed */
 1937: 
 1938:     for (;;) {
 1939:         /* Make sure that we have a literal to write. */
 1940:         if (s->lookahead == 0) {
 1941:             fill_window(s);
 1942:             if (s->lookahead == 0) {
 1943:                 if (flush == Z_NO_FLUSH)
 1944:                     return need_more;
 1945:                 break;      /* flush the current block */
 1946:             }
 1947:         }
 1948: 
 1949:         /* Output a literal byte */
 1950:         s->match_length = 0;
 1951:         Tracevv((stderr,"%c", s->window[s->strstart]));
 1952:         _tr_tally_lit (s, s->window[s->strstart], bflush);
 1953:         s->lookahead--;
 1954:         s->strstart++;
 1955:         if (bflush) FLUSH_BLOCK(s, 0);
 1956:     }
 1957:     s->insert = 0;
 1958:     if (flush == Z_FINISH) {
 1959:         FLUSH_BLOCK(s, 1);
 1960:         return finish_done;
 1961:     }
 1962:     if (s->last_lit)
 1963:         FLUSH_BLOCK(s, 0);
 1964:     return block_done;
 1965: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>