Annotation of embedaddon/sudo/zlib/trees.c, revision 1.1

1.1     ! misho       1: /* trees.c -- output deflated data using Huffman coding
        !             2:  * Copyright (C) 1995-2010 Jean-loup Gailly
        !             3:  * detect_data_type() function provided freely by Cosmin Truta, 2006
        !             4:  * For conditions of distribution and use, see copyright notice in zlib.h
        !             5:  */
        !             6: 
        !             7: /*
        !             8:  *  ALGORITHM
        !             9:  *
        !            10:  *      The "deflation" process uses several Huffman trees. The more
        !            11:  *      common source values are represented by shorter bit sequences.
        !            12:  *
        !            13:  *      Each code tree is stored in a compressed form which is itself
        !            14:  * a Huffman encoding of the lengths of all the code strings (in
        !            15:  * ascending order by source values).  The actual code strings are
        !            16:  * reconstructed from the lengths in the inflate process, as described
        !            17:  * in the deflate specification.
        !            18:  *
        !            19:  *  REFERENCES
        !            20:  *
        !            21:  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
        !            22:  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
        !            23:  *
        !            24:  *      Storer, James A.
        !            25:  *          Data Compression:  Methods and Theory, pp. 49-50.
        !            26:  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
        !            27:  *
        !            28:  *      Sedgewick, R.
        !            29:  *          Algorithms, p290.
        !            30:  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
        !            31:  */
        !            32: 
        !            33: /* @(#) $Id$ */
        !            34: 
        !            35: /* #define GEN_TREES_H */
        !            36: 
        !            37: #include "deflate.h"
        !            38: 
        !            39: #ifdef DEBUG
        !            40: #  include <ctype.h>
        !            41: #endif
        !            42: 
        !            43: /* ===========================================================================
        !            44:  * Constants
        !            45:  */
        !            46: 
        !            47: #define MAX_BL_BITS 7
        !            48: /* Bit length codes must not exceed MAX_BL_BITS bits */
        !            49: 
        !            50: #define END_BLOCK 256
        !            51: /* end of block literal code */
        !            52: 
        !            53: #define REP_3_6      16
        !            54: /* repeat previous bit length 3-6 times (2 bits of repeat count) */
        !            55: 
        !            56: #define REPZ_3_10    17
        !            57: /* repeat a zero length 3-10 times  (3 bits of repeat count) */
        !            58: 
        !            59: #define REPZ_11_138  18
        !            60: /* repeat a zero length 11-138 times  (7 bits of repeat count) */
        !            61: 
        !            62: local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
        !            63:    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
        !            64: 
        !            65: local const int extra_dbits[D_CODES] /* extra bits for each distance code */
        !            66:    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
        !            67: 
        !            68: local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
        !            69:    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
        !            70: 
        !            71: local const uch bl_order[BL_CODES]
        !            72:    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
        !            73: /* The lengths of the bit length codes are sent in order of decreasing
        !            74:  * probability, to avoid transmitting the lengths for unused bit length codes.
        !            75:  */
        !            76: 
        !            77: #define Buf_size (8 * 2*sizeof(char))
        !            78: /* Number of bits used within bi_buf. (bi_buf might be implemented on
        !            79:  * more than 16 bits on some systems.)
        !            80:  */
        !            81: 
        !            82: /* ===========================================================================
        !            83:  * Local data. These are initialized only once.
        !            84:  */
        !            85: 
        !            86: #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
        !            87: 
        !            88: #if defined(GEN_TREES_H) || !defined(STDC)
        !            89: /* non ANSI compilers may not accept trees.h */
        !            90: 
        !            91: local ct_data static_ltree[L_CODES+2];
        !            92: /* The static literal tree. Since the bit lengths are imposed, there is no
        !            93:  * need for the L_CODES extra codes used during heap construction. However
        !            94:  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
        !            95:  * below).
        !            96:  */
        !            97: 
        !            98: local ct_data static_dtree[D_CODES];
        !            99: /* The static distance tree. (Actually a trivial tree since all codes use
        !           100:  * 5 bits.)
        !           101:  */
        !           102: 
        !           103: uch _dist_code[DIST_CODE_LEN];
        !           104: /* Distance codes. The first 256 values correspond to the distances
        !           105:  * 3 .. 258, the last 256 values correspond to the top 8 bits of
        !           106:  * the 15 bit distances.
        !           107:  */
        !           108: 
        !           109: uch _length_code[MAX_MATCH-MIN_MATCH+1];
        !           110: /* length code for each normalized match length (0 == MIN_MATCH) */
        !           111: 
        !           112: local int base_length[LENGTH_CODES];
        !           113: /* First normalized length for each code (0 = MIN_MATCH) */
        !           114: 
        !           115: local int base_dist[D_CODES];
        !           116: /* First normalized distance for each code (0 = distance of 1) */
        !           117: 
        !           118: #else
        !           119: #  include "trees.h"
        !           120: #endif /* GEN_TREES_H */
        !           121: 
        !           122: struct static_tree_desc_s {
        !           123:     const ct_data *static_tree;  /* static tree or NULL */
        !           124:     const intf *extra_bits;      /* extra bits for each code or NULL */
        !           125:     int     extra_base;          /* base index for extra_bits */
        !           126:     int     elems;               /* max number of elements in the tree */
        !           127:     int     max_length;          /* max bit length for the codes */
        !           128: };
        !           129: 
        !           130: local static_tree_desc  static_l_desc =
        !           131: {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
        !           132: 
        !           133: local static_tree_desc  static_d_desc =
        !           134: {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
        !           135: 
        !           136: local static_tree_desc  static_bl_desc =
        !           137: {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
        !           138: 
        !           139: /* ===========================================================================
        !           140:  * Local (static) routines in this file.
        !           141:  */
        !           142: 
        !           143: local void tr_static_init OF((void));
        !           144: local void init_block     OF((deflate_state *s));
        !           145: local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
        !           146: local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
        !           147: local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
        !           148: local void build_tree     OF((deflate_state *s, tree_desc *desc));
        !           149: local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
        !           150: local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
        !           151: local int  build_bl_tree  OF((deflate_state *s));
        !           152: local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
        !           153:                               int blcodes));
        !           154: local void compress_block OF((deflate_state *s, ct_data *ltree,
        !           155:                               ct_data *dtree));
        !           156: local int  detect_data_type OF((deflate_state *s));
        !           157: local unsigned bi_reverse OF((unsigned value, int length));
        !           158: local void bi_windup      OF((deflate_state *s));
        !           159: local void bi_flush       OF((deflate_state *s));
        !           160: local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
        !           161:                               int header));
        !           162: 
        !           163: #ifdef GEN_TREES_H
        !           164: local void gen_trees_header OF((void));
        !           165: #endif
        !           166: 
        !           167: #ifndef DEBUG
        !           168: #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
        !           169:    /* Send a code of the given tree. c and tree must not have side effects */
        !           170: 
        !           171: #else /* DEBUG */
        !           172: #  define send_code(s, c, tree) \
        !           173:      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
        !           174:        send_bits(s, tree[c].Code, tree[c].Len); }
        !           175: #endif
        !           176: 
        !           177: /* ===========================================================================
        !           178:  * Output a short LSB first on the stream.
        !           179:  * IN assertion: there is enough room in pendingBuf.
        !           180:  */
        !           181: #define put_short(s, w) { \
        !           182:     put_byte(s, (uch)((w) & 0xff)); \
        !           183:     put_byte(s, (uch)((ush)(w) >> 8)); \
        !           184: }
        !           185: 
        !           186: /* ===========================================================================
        !           187:  * Send a value on a given number of bits.
        !           188:  * IN assertion: length <= 16 and value fits in length bits.
        !           189:  */
        !           190: #ifdef DEBUG
        !           191: local void send_bits      OF((deflate_state *s, int value, int length));
        !           192: 
        !           193: local void send_bits(s, value, length)
        !           194:     deflate_state *s;
        !           195:     int value;  /* value to send */
        !           196:     int length; /* number of bits */
        !           197: {
        !           198:     Tracevv((stderr," l %2d v %4x ", length, value));
        !           199:     Assert(length > 0 && length <= 15, "invalid length");
        !           200:     s->bits_sent += (ulg)length;
        !           201: 
        !           202:     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
        !           203:      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
        !           204:      * unused bits in value.
        !           205:      */
        !           206:     if (s->bi_valid > (int)Buf_size - length) {
        !           207:         s->bi_buf |= (ush)value << s->bi_valid;
        !           208:         put_short(s, s->bi_buf);
        !           209:         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
        !           210:         s->bi_valid += length - Buf_size;
        !           211:     } else {
        !           212:         s->bi_buf |= (ush)value << s->bi_valid;
        !           213:         s->bi_valid += length;
        !           214:     }
        !           215: }
        !           216: #else /* !DEBUG */
        !           217: 
        !           218: #define send_bits(s, value, length) \
        !           219: { int len = length;\
        !           220:   if (s->bi_valid > (int)Buf_size - len) {\
        !           221:     int val = value;\
        !           222:     s->bi_buf |= (ush)val << s->bi_valid;\
        !           223:     put_short(s, s->bi_buf);\
        !           224:     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
        !           225:     s->bi_valid += len - Buf_size;\
        !           226:   } else {\
        !           227:     s->bi_buf |= (ush)(value) << s->bi_valid;\
        !           228:     s->bi_valid += len;\
        !           229:   }\
        !           230: }
        !           231: #endif /* DEBUG */
        !           232: 
        !           233: 
        !           234: /* the arguments must not have side effects */
        !           235: 
        !           236: /* ===========================================================================
        !           237:  * Initialize the various 'constant' tables.
        !           238:  */
        !           239: local void tr_static_init()
        !           240: {
        !           241: #if defined(GEN_TREES_H) || !defined(STDC)
        !           242:     static int static_init_done = 0;
        !           243:     int n;        /* iterates over tree elements */
        !           244:     int bits;     /* bit counter */
        !           245:     int length;   /* length value */
        !           246:     int code;     /* code value */
        !           247:     int dist;     /* distance index */
        !           248:     ush bl_count[MAX_BITS+1];
        !           249:     /* number of codes at each bit length for an optimal tree */
        !           250: 
        !           251:     if (static_init_done) return;
        !           252: 
        !           253:     /* For some embedded targets, global variables are not initialized: */
        !           254: #ifdef NO_INIT_GLOBAL_POINTERS
        !           255:     static_l_desc.static_tree = static_ltree;
        !           256:     static_l_desc.extra_bits = extra_lbits;
        !           257:     static_d_desc.static_tree = static_dtree;
        !           258:     static_d_desc.extra_bits = extra_dbits;
        !           259:     static_bl_desc.extra_bits = extra_blbits;
        !           260: #endif
        !           261: 
        !           262:     /* Initialize the mapping length (0..255) -> length code (0..28) */
        !           263:     length = 0;
        !           264:     for (code = 0; code < LENGTH_CODES-1; code++) {
        !           265:         base_length[code] = length;
        !           266:         for (n = 0; n < (1<<extra_lbits[code]); n++) {
        !           267:             _length_code[length++] = (uch)code;
        !           268:         }
        !           269:     }
        !           270:     Assert (length == 256, "tr_static_init: length != 256");
        !           271:     /* Note that the length 255 (match length 258) can be represented
        !           272:      * in two different ways: code 284 + 5 bits or code 285, so we
        !           273:      * overwrite length_code[255] to use the best encoding:
        !           274:      */
        !           275:     _length_code[length-1] = (uch)code;
        !           276: 
        !           277:     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
        !           278:     dist = 0;
        !           279:     for (code = 0 ; code < 16; code++) {
        !           280:         base_dist[code] = dist;
        !           281:         for (n = 0; n < (1<<extra_dbits[code]); n++) {
        !           282:             _dist_code[dist++] = (uch)code;
        !           283:         }
        !           284:     }
        !           285:     Assert (dist == 256, "tr_static_init: dist != 256");
        !           286:     dist >>= 7; /* from now on, all distances are divided by 128 */
        !           287:     for ( ; code < D_CODES; code++) {
        !           288:         base_dist[code] = dist << 7;
        !           289:         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
        !           290:             _dist_code[256 + dist++] = (uch)code;
        !           291:         }
        !           292:     }
        !           293:     Assert (dist == 256, "tr_static_init: 256+dist != 512");
        !           294: 
        !           295:     /* Construct the codes of the static literal tree */
        !           296:     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
        !           297:     n = 0;
        !           298:     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
        !           299:     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
        !           300:     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
        !           301:     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
        !           302:     /* Codes 286 and 287 do not exist, but we must include them in the
        !           303:      * tree construction to get a canonical Huffman tree (longest code
        !           304:      * all ones)
        !           305:      */
        !           306:     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
        !           307: 
        !           308:     /* The static distance tree is trivial: */
        !           309:     for (n = 0; n < D_CODES; n++) {
        !           310:         static_dtree[n].Len = 5;
        !           311:         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
        !           312:     }
        !           313:     static_init_done = 1;
        !           314: 
        !           315: #  ifdef GEN_TREES_H
        !           316:     gen_trees_header();
        !           317: #  endif
        !           318: #endif /* defined(GEN_TREES_H) || !defined(STDC) */
        !           319: }
        !           320: 
        !           321: /* ===========================================================================
        !           322:  * Genererate the file trees.h describing the static trees.
        !           323:  */
        !           324: #ifdef GEN_TREES_H
        !           325: #  ifndef DEBUG
        !           326: #    include <stdio.h>
        !           327: #  endif
        !           328: 
        !           329: #  define SEPARATOR(i, last, width) \
        !           330:       ((i) == (last)? "\n};\n\n" :    \
        !           331:        ((i) % (width) == (width)-1 ? ",\n" : ", "))
        !           332: 
        !           333: void gen_trees_header()
        !           334: {
        !           335:     FILE *header = fopen("trees.h", "w");
        !           336:     int i;
        !           337: 
        !           338:     Assert (header != NULL, "Can't open trees.h");
        !           339:     fprintf(header,
        !           340:             "/* header created automatically with -DGEN_TREES_H */\n\n");
        !           341: 
        !           342:     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
        !           343:     for (i = 0; i < L_CODES+2; i++) {
        !           344:         fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
        !           345:                 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
        !           346:     }
        !           347: 
        !           348:     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
        !           349:     for (i = 0; i < D_CODES; i++) {
        !           350:         fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
        !           351:                 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
        !           352:     }
        !           353: 
        !           354:     fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
        !           355:     for (i = 0; i < DIST_CODE_LEN; i++) {
        !           356:         fprintf(header, "%2u%s", _dist_code[i],
        !           357:                 SEPARATOR(i, DIST_CODE_LEN-1, 20));
        !           358:     }
        !           359: 
        !           360:     fprintf(header,
        !           361:         "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
        !           362:     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
        !           363:         fprintf(header, "%2u%s", _length_code[i],
        !           364:                 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
        !           365:     }
        !           366: 
        !           367:     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
        !           368:     for (i = 0; i < LENGTH_CODES; i++) {
        !           369:         fprintf(header, "%1u%s", base_length[i],
        !           370:                 SEPARATOR(i, LENGTH_CODES-1, 20));
        !           371:     }
        !           372: 
        !           373:     fprintf(header, "local const int base_dist[D_CODES] = {\n");
        !           374:     for (i = 0; i < D_CODES; i++) {
        !           375:         fprintf(header, "%5u%s", base_dist[i],
        !           376:                 SEPARATOR(i, D_CODES-1, 10));
        !           377:     }
        !           378: 
        !           379:     fclose(header);
        !           380: }
        !           381: #endif /* GEN_TREES_H */
        !           382: 
        !           383: /* ===========================================================================
        !           384:  * Initialize the tree data structures for a new zlib stream.
        !           385:  */
        !           386: void ZLIB_INTERNAL _tr_init(s)
        !           387:     deflate_state *s;
        !           388: {
        !           389:     tr_static_init();
        !           390: 
        !           391:     s->l_desc.dyn_tree = s->dyn_ltree;
        !           392:     s->l_desc.stat_desc = &static_l_desc;
        !           393: 
        !           394:     s->d_desc.dyn_tree = s->dyn_dtree;
        !           395:     s->d_desc.stat_desc = &static_d_desc;
        !           396: 
        !           397:     s->bl_desc.dyn_tree = s->bl_tree;
        !           398:     s->bl_desc.stat_desc = &static_bl_desc;
        !           399: 
        !           400:     s->bi_buf = 0;
        !           401:     s->bi_valid = 0;
        !           402:     s->last_eob_len = 8; /* enough lookahead for inflate */
        !           403: #ifdef DEBUG
        !           404:     s->compressed_len = 0L;
        !           405:     s->bits_sent = 0L;
        !           406: #endif
        !           407: 
        !           408:     /* Initialize the first block of the first file: */
        !           409:     init_block(s);
        !           410: }
        !           411: 
        !           412: /* ===========================================================================
        !           413:  * Initialize a new block.
        !           414:  */
        !           415: local void init_block(s)
        !           416:     deflate_state *s;
        !           417: {
        !           418:     int n; /* iterates over tree elements */
        !           419: 
        !           420:     /* Initialize the trees. */
        !           421:     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
        !           422:     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
        !           423:     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
        !           424: 
        !           425:     s->dyn_ltree[END_BLOCK].Freq = 1;
        !           426:     s->opt_len = s->static_len = 0L;
        !           427:     s->last_lit = s->matches = 0;
        !           428: }
        !           429: 
        !           430: #define SMALLEST 1
        !           431: /* Index within the heap array of least frequent node in the Huffman tree */
        !           432: 
        !           433: 
        !           434: /* ===========================================================================
        !           435:  * Remove the smallest element from the heap and recreate the heap with
        !           436:  * one less element. Updates heap and heap_len.
        !           437:  */
        !           438: #define pqremove(s, tree, top) \
        !           439: {\
        !           440:     top = s->heap[SMALLEST]; \
        !           441:     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
        !           442:     pqdownheap(s, tree, SMALLEST); \
        !           443: }
        !           444: 
        !           445: /* ===========================================================================
        !           446:  * Compares to subtrees, using the tree depth as tie breaker when
        !           447:  * the subtrees have equal frequency. This minimizes the worst case length.
        !           448:  */
        !           449: #define smaller(tree, n, m, depth) \
        !           450:    (tree[n].Freq < tree[m].Freq || \
        !           451:    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
        !           452: 
        !           453: /* ===========================================================================
        !           454:  * Restore the heap property by moving down the tree starting at node k,
        !           455:  * exchanging a node with the smallest of its two sons if necessary, stopping
        !           456:  * when the heap property is re-established (each father smaller than its
        !           457:  * two sons).
        !           458:  */
        !           459: local void pqdownheap(s, tree, k)
        !           460:     deflate_state *s;
        !           461:     ct_data *tree;  /* the tree to restore */
        !           462:     int k;               /* node to move down */
        !           463: {
        !           464:     int v = s->heap[k];
        !           465:     int j = k << 1;  /* left son of k */
        !           466:     while (j <= s->heap_len) {
        !           467:         /* Set j to the smallest of the two sons: */
        !           468:         if (j < s->heap_len &&
        !           469:             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
        !           470:             j++;
        !           471:         }
        !           472:         /* Exit if v is smaller than both sons */
        !           473:         if (smaller(tree, v, s->heap[j], s->depth)) break;
        !           474: 
        !           475:         /* Exchange v with the smallest son */
        !           476:         s->heap[k] = s->heap[j];  k = j;
        !           477: 
        !           478:         /* And continue down the tree, setting j to the left son of k */
        !           479:         j <<= 1;
        !           480:     }
        !           481:     s->heap[k] = v;
        !           482: }
        !           483: 
        !           484: /* ===========================================================================
        !           485:  * Compute the optimal bit lengths for a tree and update the total bit length
        !           486:  * for the current block.
        !           487:  * IN assertion: the fields freq and dad are set, heap[heap_max] and
        !           488:  *    above are the tree nodes sorted by increasing frequency.
        !           489:  * OUT assertions: the field len is set to the optimal bit length, the
        !           490:  *     array bl_count contains the frequencies for each bit length.
        !           491:  *     The length opt_len is updated; static_len is also updated if stree is
        !           492:  *     not null.
        !           493:  */
        !           494: local void gen_bitlen(s, desc)
        !           495:     deflate_state *s;
        !           496:     tree_desc *desc;    /* the tree descriptor */
        !           497: {
        !           498:     ct_data *tree        = desc->dyn_tree;
        !           499:     int max_code         = desc->max_code;
        !           500:     const ct_data *stree = desc->stat_desc->static_tree;
        !           501:     const intf *extra    = desc->stat_desc->extra_bits;
        !           502:     int base             = desc->stat_desc->extra_base;
        !           503:     int max_length       = desc->stat_desc->max_length;
        !           504:     int h;              /* heap index */
        !           505:     int n, m;           /* iterate over the tree elements */
        !           506:     int bits;           /* bit length */
        !           507:     int xbits;          /* extra bits */
        !           508:     ush f;              /* frequency */
        !           509:     int overflow = 0;   /* number of elements with bit length too large */
        !           510: 
        !           511:     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
        !           512: 
        !           513:     /* In a first pass, compute the optimal bit lengths (which may
        !           514:      * overflow in the case of the bit length tree).
        !           515:      */
        !           516:     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
        !           517: 
        !           518:     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
        !           519:         n = s->heap[h];
        !           520:         bits = tree[tree[n].Dad].Len + 1;
        !           521:         if (bits > max_length) bits = max_length, overflow++;
        !           522:         tree[n].Len = (ush)bits;
        !           523:         /* We overwrite tree[n].Dad which is no longer needed */
        !           524: 
        !           525:         if (n > max_code) continue; /* not a leaf node */
        !           526: 
        !           527:         s->bl_count[bits]++;
        !           528:         xbits = 0;
        !           529:         if (n >= base) xbits = extra[n-base];
        !           530:         f = tree[n].Freq;
        !           531:         s->opt_len += (ulg)f * (bits + xbits);
        !           532:         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
        !           533:     }
        !           534:     if (overflow == 0) return;
        !           535: 
        !           536:     Trace((stderr,"\nbit length overflow\n"));
        !           537:     /* This happens for example on obj2 and pic of the Calgary corpus */
        !           538: 
        !           539:     /* Find the first bit length which could increase: */
        !           540:     do {
        !           541:         bits = max_length-1;
        !           542:         while (s->bl_count[bits] == 0) bits--;
        !           543:         s->bl_count[bits]--;      /* move one leaf down the tree */
        !           544:         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
        !           545:         s->bl_count[max_length]--;
        !           546:         /* The brother of the overflow item also moves one step up,
        !           547:          * but this does not affect bl_count[max_length]
        !           548:          */
        !           549:         overflow -= 2;
        !           550:     } while (overflow > 0);
        !           551: 
        !           552:     /* Now recompute all bit lengths, scanning in increasing frequency.
        !           553:      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
        !           554:      * lengths instead of fixing only the wrong ones. This idea is taken
        !           555:      * from 'ar' written by Haruhiko Okumura.)
        !           556:      */
        !           557:     for (bits = max_length; bits != 0; bits--) {
        !           558:         n = s->bl_count[bits];
        !           559:         while (n != 0) {
        !           560:             m = s->heap[--h];
        !           561:             if (m > max_code) continue;
        !           562:             if ((unsigned) tree[m].Len != (unsigned) bits) {
        !           563:                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
        !           564:                 s->opt_len += ((long)bits - (long)tree[m].Len)
        !           565:                               *(long)tree[m].Freq;
        !           566:                 tree[m].Len = (ush)bits;
        !           567:             }
        !           568:             n--;
        !           569:         }
        !           570:     }
        !           571: }
        !           572: 
        !           573: /* ===========================================================================
        !           574:  * Generate the codes for a given tree and bit counts (which need not be
        !           575:  * optimal).
        !           576:  * IN assertion: the array bl_count contains the bit length statistics for
        !           577:  * the given tree and the field len is set for all tree elements.
        !           578:  * OUT assertion: the field code is set for all tree elements of non
        !           579:  *     zero code length.
        !           580:  */
        !           581: local void gen_codes (tree, max_code, bl_count)
        !           582:     ct_data *tree;             /* the tree to decorate */
        !           583:     int max_code;              /* largest code with non zero frequency */
        !           584:     ushf *bl_count;            /* number of codes at each bit length */
        !           585: {
        !           586:     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
        !           587:     ush code = 0;              /* running code value */
        !           588:     int bits;                  /* bit index */
        !           589:     int n;                     /* code index */
        !           590: 
        !           591:     /* The distribution counts are first used to generate the code values
        !           592:      * without bit reversal.
        !           593:      */
        !           594:     for (bits = 1; bits <= MAX_BITS; bits++) {
        !           595:         next_code[bits] = code = (code + bl_count[bits-1]) << 1;
        !           596:     }
        !           597:     /* Check that the bit counts in bl_count are consistent. The last code
        !           598:      * must be all ones.
        !           599:      */
        !           600:     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
        !           601:             "inconsistent bit counts");
        !           602:     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
        !           603: 
        !           604:     for (n = 0;  n <= max_code; n++) {
        !           605:         int len = tree[n].Len;
        !           606:         if (len == 0) continue;
        !           607:         /* Now reverse the bits */
        !           608:         tree[n].Code = bi_reverse(next_code[len]++, len);
        !           609: 
        !           610:         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
        !           611:              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
        !           612:     }
        !           613: }
        !           614: 
        !           615: /* ===========================================================================
        !           616:  * Construct one Huffman tree and assigns the code bit strings and lengths.
        !           617:  * Update the total bit length for the current block.
        !           618:  * IN assertion: the field freq is set for all tree elements.
        !           619:  * OUT assertions: the fields len and code are set to the optimal bit length
        !           620:  *     and corresponding code. The length opt_len is updated; static_len is
        !           621:  *     also updated if stree is not null. The field max_code is set.
        !           622:  */
        !           623: local void build_tree(s, desc)
        !           624:     deflate_state *s;
        !           625:     tree_desc *desc; /* the tree descriptor */
        !           626: {
        !           627:     ct_data *tree         = desc->dyn_tree;
        !           628:     const ct_data *stree  = desc->stat_desc->static_tree;
        !           629:     int elems             = desc->stat_desc->elems;
        !           630:     int n, m;          /* iterate over heap elements */
        !           631:     int max_code = -1; /* largest code with non zero frequency */
        !           632:     int node;          /* new node being created */
        !           633: 
        !           634:     /* Construct the initial heap, with least frequent element in
        !           635:      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
        !           636:      * heap[0] is not used.
        !           637:      */
        !           638:     s->heap_len = 0, s->heap_max = HEAP_SIZE;
        !           639: 
        !           640:     for (n = 0; n < elems; n++) {
        !           641:         if (tree[n].Freq != 0) {
        !           642:             s->heap[++(s->heap_len)] = max_code = n;
        !           643:             s->depth[n] = 0;
        !           644:         } else {
        !           645:             tree[n].Len = 0;
        !           646:         }
        !           647:     }
        !           648: 
        !           649:     /* The pkzip format requires that at least one distance code exists,
        !           650:      * and that at least one bit should be sent even if there is only one
        !           651:      * possible code. So to avoid special checks later on we force at least
        !           652:      * two codes of non zero frequency.
        !           653:      */
        !           654:     while (s->heap_len < 2) {
        !           655:         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
        !           656:         tree[node].Freq = 1;
        !           657:         s->depth[node] = 0;
        !           658:         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
        !           659:         /* node is 0 or 1 so it does not have extra bits */
        !           660:     }
        !           661:     desc->max_code = max_code;
        !           662: 
        !           663:     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
        !           664:      * establish sub-heaps of increasing lengths:
        !           665:      */
        !           666:     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
        !           667: 
        !           668:     /* Construct the Huffman tree by repeatedly combining the least two
        !           669:      * frequent nodes.
        !           670:      */
        !           671:     node = elems;              /* next internal node of the tree */
        !           672:     do {
        !           673:         pqremove(s, tree, n);  /* n = node of least frequency */
        !           674:         m = s->heap[SMALLEST]; /* m = node of next least frequency */
        !           675: 
        !           676:         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
        !           677:         s->heap[--(s->heap_max)] = m;
        !           678: 
        !           679:         /* Create a new node father of n and m */
        !           680:         tree[node].Freq = tree[n].Freq + tree[m].Freq;
        !           681:         s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
        !           682:                                 s->depth[n] : s->depth[m]) + 1);
        !           683:         tree[n].Dad = tree[m].Dad = (ush)node;
        !           684: #ifdef DUMP_BL_TREE
        !           685:         if (tree == s->bl_tree) {
        !           686:             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
        !           687:                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
        !           688:         }
        !           689: #endif
        !           690:         /* and insert the new node in the heap */
        !           691:         s->heap[SMALLEST] = node++;
        !           692:         pqdownheap(s, tree, SMALLEST);
        !           693: 
        !           694:     } while (s->heap_len >= 2);
        !           695: 
        !           696:     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
        !           697: 
        !           698:     /* At this point, the fields freq and dad are set. We can now
        !           699:      * generate the bit lengths.
        !           700:      */
        !           701:     gen_bitlen(s, (tree_desc *)desc);
        !           702: 
        !           703:     /* The field len is now set, we can generate the bit codes */
        !           704:     gen_codes ((ct_data *)tree, max_code, s->bl_count);
        !           705: }
        !           706: 
        !           707: /* ===========================================================================
        !           708:  * Scan a literal or distance tree to determine the frequencies of the codes
        !           709:  * in the bit length tree.
        !           710:  */
        !           711: local void scan_tree (s, tree, max_code)
        !           712:     deflate_state *s;
        !           713:     ct_data *tree;   /* the tree to be scanned */
        !           714:     int max_code;    /* and its largest code of non zero frequency */
        !           715: {
        !           716:     int n;                     /* iterates over all tree elements */
        !           717:     int prevlen = -1;          /* last emitted length */
        !           718:     int curlen;                /* length of current code */
        !           719:     int nextlen = tree[0].Len; /* length of next code */
        !           720:     int count = 0;             /* repeat count of the current code */
        !           721:     int max_count = 7;         /* max repeat count */
        !           722:     int min_count = 4;         /* min repeat count */
        !           723: 
        !           724:     if (nextlen == 0) max_count = 138, min_count = 3;
        !           725:     tree[max_code+1].Len = (ush)0xffff; /* guard */
        !           726: 
        !           727:     for (n = 0; n <= max_code; n++) {
        !           728:         curlen = nextlen; nextlen = tree[n+1].Len;
        !           729:         if (++count < max_count && curlen == nextlen) {
        !           730:             continue;
        !           731:         } else if (count < min_count) {
        !           732:             s->bl_tree[curlen].Freq += count;
        !           733:         } else if (curlen != 0) {
        !           734:             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
        !           735:             s->bl_tree[REP_3_6].Freq++;
        !           736:         } else if (count <= 10) {
        !           737:             s->bl_tree[REPZ_3_10].Freq++;
        !           738:         } else {
        !           739:             s->bl_tree[REPZ_11_138].Freq++;
        !           740:         }
        !           741:         count = 0; prevlen = curlen;
        !           742:         if (nextlen == 0) {
        !           743:             max_count = 138, min_count = 3;
        !           744:         } else if (curlen == nextlen) {
        !           745:             max_count = 6, min_count = 3;
        !           746:         } else {
        !           747:             max_count = 7, min_count = 4;
        !           748:         }
        !           749:     }
        !           750: }
        !           751: 
        !           752: /* ===========================================================================
        !           753:  * Send a literal or distance tree in compressed form, using the codes in
        !           754:  * bl_tree.
        !           755:  */
        !           756: local void send_tree (s, tree, max_code)
        !           757:     deflate_state *s;
        !           758:     ct_data *tree; /* the tree to be scanned */
        !           759:     int max_code;       /* and its largest code of non zero frequency */
        !           760: {
        !           761:     int n;                     /* iterates over all tree elements */
        !           762:     int prevlen = -1;          /* last emitted length */
        !           763:     int curlen;                /* length of current code */
        !           764:     int nextlen = tree[0].Len; /* length of next code */
        !           765:     int count = 0;             /* repeat count of the current code */
        !           766:     int max_count = 7;         /* max repeat count */
        !           767:     int min_count = 4;         /* min repeat count */
        !           768: 
        !           769:     /* tree[max_code+1].Len = -1; */  /* guard already set */
        !           770:     if (nextlen == 0) max_count = 138, min_count = 3;
        !           771: 
        !           772:     for (n = 0; n <= max_code; n++) {
        !           773:         curlen = nextlen; nextlen = tree[n+1].Len;
        !           774:         if (++count < max_count && curlen == nextlen) {
        !           775:             continue;
        !           776:         } else if (count < min_count) {
        !           777:             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
        !           778: 
        !           779:         } else if (curlen != 0) {
        !           780:             if (curlen != prevlen) {
        !           781:                 send_code(s, curlen, s->bl_tree); count--;
        !           782:             }
        !           783:             Assert(count >= 3 && count <= 6, " 3_6?");
        !           784:             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
        !           785: 
        !           786:         } else if (count <= 10) {
        !           787:             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
        !           788: 
        !           789:         } else {
        !           790:             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
        !           791:         }
        !           792:         count = 0; prevlen = curlen;
        !           793:         if (nextlen == 0) {
        !           794:             max_count = 138, min_count = 3;
        !           795:         } else if (curlen == nextlen) {
        !           796:             max_count = 6, min_count = 3;
        !           797:         } else {
        !           798:             max_count = 7, min_count = 4;
        !           799:         }
        !           800:     }
        !           801: }
        !           802: 
        !           803: /* ===========================================================================
        !           804:  * Construct the Huffman tree for the bit lengths and return the index in
        !           805:  * bl_order of the last bit length code to send.
        !           806:  */
        !           807: local int build_bl_tree(s)
        !           808:     deflate_state *s;
        !           809: {
        !           810:     int max_blindex;  /* index of last bit length code of non zero freq */
        !           811: 
        !           812:     /* Determine the bit length frequencies for literal and distance trees */
        !           813:     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
        !           814:     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
        !           815: 
        !           816:     /* Build the bit length tree: */
        !           817:     build_tree(s, (tree_desc *)(&(s->bl_desc)));
        !           818:     /* opt_len now includes the length of the tree representations, except
        !           819:      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
        !           820:      */
        !           821: 
        !           822:     /* Determine the number of bit length codes to send. The pkzip format
        !           823:      * requires that at least 4 bit length codes be sent. (appnote.txt says
        !           824:      * 3 but the actual value used is 4.)
        !           825:      */
        !           826:     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
        !           827:         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
        !           828:     }
        !           829:     /* Update opt_len to include the bit length tree and counts */
        !           830:     s->opt_len += 3*(max_blindex+1) + 5+5+4;
        !           831:     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
        !           832:             s->opt_len, s->static_len));
        !           833: 
        !           834:     return max_blindex;
        !           835: }
        !           836: 
        !           837: /* ===========================================================================
        !           838:  * Send the header for a block using dynamic Huffman trees: the counts, the
        !           839:  * lengths of the bit length codes, the literal tree and the distance tree.
        !           840:  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
        !           841:  */
        !           842: local void send_all_trees(s, lcodes, dcodes, blcodes)
        !           843:     deflate_state *s;
        !           844:     int lcodes, dcodes, blcodes; /* number of codes for each tree */
        !           845: {
        !           846:     int rank;                    /* index in bl_order */
        !           847: 
        !           848:     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
        !           849:     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
        !           850:             "too many codes");
        !           851:     Tracev((stderr, "\nbl counts: "));
        !           852:     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
        !           853:     send_bits(s, dcodes-1,   5);
        !           854:     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
        !           855:     for (rank = 0; rank < blcodes; rank++) {
        !           856:         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
        !           857:         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
        !           858:     }
        !           859:     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
        !           860: 
        !           861:     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
        !           862:     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
        !           863: 
        !           864:     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
        !           865:     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
        !           866: }
        !           867: 
        !           868: /* ===========================================================================
        !           869:  * Send a stored block
        !           870:  */
        !           871: void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
        !           872:     deflate_state *s;
        !           873:     charf *buf;       /* input block */
        !           874:     ulg stored_len;   /* length of input block */
        !           875:     int last;         /* one if this is the last block for a file */
        !           876: {
        !           877:     send_bits(s, (STORED_BLOCK<<1)+last, 3);    /* send block type */
        !           878: #ifdef DEBUG
        !           879:     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
        !           880:     s->compressed_len += (stored_len + 4) << 3;
        !           881: #endif
        !           882:     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
        !           883: }
        !           884: 
        !           885: /* ===========================================================================
        !           886:  * Send one empty static block to give enough lookahead for inflate.
        !           887:  * This takes 10 bits, of which 7 may remain in the bit buffer.
        !           888:  * The current inflate code requires 9 bits of lookahead. If the
        !           889:  * last two codes for the previous block (real code plus EOB) were coded
        !           890:  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
        !           891:  * the last real code. In this case we send two empty static blocks instead
        !           892:  * of one. (There are no problems if the previous block is stored or fixed.)
        !           893:  * To simplify the code, we assume the worst case of last real code encoded
        !           894:  * on one bit only.
        !           895:  */
        !           896: void ZLIB_INTERNAL _tr_align(s)
        !           897:     deflate_state *s;
        !           898: {
        !           899:     send_bits(s, STATIC_TREES<<1, 3);
        !           900:     send_code(s, END_BLOCK, static_ltree);
        !           901: #ifdef DEBUG
        !           902:     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
        !           903: #endif
        !           904:     bi_flush(s);
        !           905:     /* Of the 10 bits for the empty block, we have already sent
        !           906:      * (10 - bi_valid) bits. The lookahead for the last real code (before
        !           907:      * the EOB of the previous block) was thus at least one plus the length
        !           908:      * of the EOB plus what we have just sent of the empty static block.
        !           909:      */
        !           910:     if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
        !           911:         send_bits(s, STATIC_TREES<<1, 3);
        !           912:         send_code(s, END_BLOCK, static_ltree);
        !           913: #ifdef DEBUG
        !           914:         s->compressed_len += 10L;
        !           915: #endif
        !           916:         bi_flush(s);
        !           917:     }
        !           918:     s->last_eob_len = 7;
        !           919: }
        !           920: 
        !           921: /* ===========================================================================
        !           922:  * Determine the best encoding for the current block: dynamic trees, static
        !           923:  * trees or store, and output the encoded block to the zip file.
        !           924:  */
        !           925: void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
        !           926:     deflate_state *s;
        !           927:     charf *buf;       /* input block, or NULL if too old */
        !           928:     ulg stored_len;   /* length of input block */
        !           929:     int last;         /* one if this is the last block for a file */
        !           930: {
        !           931:     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
        !           932:     int max_blindex = 0;  /* index of last bit length code of non zero freq */
        !           933: 
        !           934:     /* Build the Huffman trees unless a stored block is forced */
        !           935:     if (s->level > 0) {
        !           936: 
        !           937:         /* Check if the file is binary or text */
        !           938:         if (s->strm->data_type == Z_UNKNOWN)
        !           939:             s->strm->data_type = detect_data_type(s);
        !           940: 
        !           941:         /* Construct the literal and distance trees */
        !           942:         build_tree(s, (tree_desc *)(&(s->l_desc)));
        !           943:         Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
        !           944:                 s->static_len));
        !           945: 
        !           946:         build_tree(s, (tree_desc *)(&(s->d_desc)));
        !           947:         Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
        !           948:                 s->static_len));
        !           949:         /* At this point, opt_len and static_len are the total bit lengths of
        !           950:          * the compressed block data, excluding the tree representations.
        !           951:          */
        !           952: 
        !           953:         /* Build the bit length tree for the above two trees, and get the index
        !           954:          * in bl_order of the last bit length code to send.
        !           955:          */
        !           956:         max_blindex = build_bl_tree(s);
        !           957: 
        !           958:         /* Determine the best encoding. Compute the block lengths in bytes. */
        !           959:         opt_lenb = (s->opt_len+3+7)>>3;
        !           960:         static_lenb = (s->static_len+3+7)>>3;
        !           961: 
        !           962:         Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
        !           963:                 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
        !           964:                 s->last_lit));
        !           965: 
        !           966:         if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
        !           967: 
        !           968:     } else {
        !           969:         Assert(buf != (char*)0, "lost buf");
        !           970:         opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
        !           971:     }
        !           972: 
        !           973: #ifdef FORCE_STORED
        !           974:     if (buf != (char*)0) { /* force stored block */
        !           975: #else
        !           976:     if (stored_len+4 <= opt_lenb && buf != (char*)0) {
        !           977:                        /* 4: two words for the lengths */
        !           978: #endif
        !           979:         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
        !           980:          * Otherwise we can't have processed more than WSIZE input bytes since
        !           981:          * the last block flush, because compression would have been
        !           982:          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
        !           983:          * transform a block into a stored block.
        !           984:          */
        !           985:         _tr_stored_block(s, buf, stored_len, last);
        !           986: 
        !           987: #ifdef FORCE_STATIC
        !           988:     } else if (static_lenb >= 0) { /* force static trees */
        !           989: #else
        !           990:     } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
        !           991: #endif
        !           992:         send_bits(s, (STATIC_TREES<<1)+last, 3);
        !           993:         compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
        !           994: #ifdef DEBUG
        !           995:         s->compressed_len += 3 + s->static_len;
        !           996: #endif
        !           997:     } else {
        !           998:         send_bits(s, (DYN_TREES<<1)+last, 3);
        !           999:         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
        !          1000:                        max_blindex+1);
        !          1001:         compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
        !          1002: #ifdef DEBUG
        !          1003:         s->compressed_len += 3 + s->opt_len;
        !          1004: #endif
        !          1005:     }
        !          1006:     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
        !          1007:     /* The above check is made mod 2^32, for files larger than 512 MB
        !          1008:      * and uLong implemented on 32 bits.
        !          1009:      */
        !          1010:     init_block(s);
        !          1011: 
        !          1012:     if (last) {
        !          1013:         bi_windup(s);
        !          1014: #ifdef DEBUG
        !          1015:         s->compressed_len += 7;  /* align on byte boundary */
        !          1016: #endif
        !          1017:     }
        !          1018:     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
        !          1019:            s->compressed_len-7*last));
        !          1020: }
        !          1021: 
        !          1022: /* ===========================================================================
        !          1023:  * Save the match info and tally the frequency counts. Return true if
        !          1024:  * the current block must be flushed.
        !          1025:  */
        !          1026: int ZLIB_INTERNAL _tr_tally (s, dist, lc)
        !          1027:     deflate_state *s;
        !          1028:     unsigned dist;  /* distance of matched string */
        !          1029:     unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
        !          1030: {
        !          1031:     s->d_buf[s->last_lit] = (ush)dist;
        !          1032:     s->l_buf[s->last_lit++] = (uch)lc;
        !          1033:     if (dist == 0) {
        !          1034:         /* lc is the unmatched char */
        !          1035:         s->dyn_ltree[lc].Freq++;
        !          1036:     } else {
        !          1037:         s->matches++;
        !          1038:         /* Here, lc is the match length - MIN_MATCH */
        !          1039:         dist--;             /* dist = match distance - 1 */
        !          1040:         Assert((ush)dist < (ush)MAX_DIST(s) &&
        !          1041:                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
        !          1042:                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
        !          1043: 
        !          1044:         s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
        !          1045:         s->dyn_dtree[d_code(dist)].Freq++;
        !          1046:     }
        !          1047: 
        !          1048: #ifdef TRUNCATE_BLOCK
        !          1049:     /* Try to guess if it is profitable to stop the current block here */
        !          1050:     if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
        !          1051:         /* Compute an upper bound for the compressed length */
        !          1052:         ulg out_length = (ulg)s->last_lit*8L;
        !          1053:         ulg in_length = (ulg)((long)s->strstart - s->block_start);
        !          1054:         int dcode;
        !          1055:         for (dcode = 0; dcode < D_CODES; dcode++) {
        !          1056:             out_length += (ulg)s->dyn_dtree[dcode].Freq *
        !          1057:                 (5L+extra_dbits[dcode]);
        !          1058:         }
        !          1059:         out_length >>= 3;
        !          1060:         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
        !          1061:                s->last_lit, in_length, out_length,
        !          1062:                100L - out_length*100L/in_length));
        !          1063:         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
        !          1064:     }
        !          1065: #endif
        !          1066:     return (s->last_lit == s->lit_bufsize-1);
        !          1067:     /* We avoid equality with lit_bufsize because of wraparound at 64K
        !          1068:      * on 16 bit machines and because stored blocks are restricted to
        !          1069:      * 64K-1 bytes.
        !          1070:      */
        !          1071: }
        !          1072: 
        !          1073: /* ===========================================================================
        !          1074:  * Send the block data compressed using the given Huffman trees
        !          1075:  */
        !          1076: local void compress_block(s, ltree, dtree)
        !          1077:     deflate_state *s;
        !          1078:     ct_data *ltree; /* literal tree */
        !          1079:     ct_data *dtree; /* distance tree */
        !          1080: {
        !          1081:     unsigned dist;      /* distance of matched string */
        !          1082:     int lc;             /* match length or unmatched char (if dist == 0) */
        !          1083:     unsigned lx = 0;    /* running index in l_buf */
        !          1084:     unsigned code;      /* the code to send */
        !          1085:     int extra;          /* number of extra bits to send */
        !          1086: 
        !          1087:     if (s->last_lit != 0) do {
        !          1088:         dist = s->d_buf[lx];
        !          1089:         lc = s->l_buf[lx++];
        !          1090:         if (dist == 0) {
        !          1091:             send_code(s, lc, ltree); /* send a literal byte */
        !          1092:             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
        !          1093:         } else {
        !          1094:             /* Here, lc is the match length - MIN_MATCH */
        !          1095:             code = _length_code[lc];
        !          1096:             send_code(s, code+LITERALS+1, ltree); /* send the length code */
        !          1097:             extra = extra_lbits[code];
        !          1098:             if (extra != 0) {
        !          1099:                 lc -= base_length[code];
        !          1100:                 send_bits(s, lc, extra);       /* send the extra length bits */
        !          1101:             }
        !          1102:             dist--; /* dist is now the match distance - 1 */
        !          1103:             code = d_code(dist);
        !          1104:             Assert (code < D_CODES, "bad d_code");
        !          1105: 
        !          1106:             send_code(s, code, dtree);       /* send the distance code */
        !          1107:             extra = extra_dbits[code];
        !          1108:             if (extra != 0) {
        !          1109:                 dist -= base_dist[code];
        !          1110:                 send_bits(s, dist, extra);   /* send the extra distance bits */
        !          1111:             }
        !          1112:         } /* literal or match pair ? */
        !          1113: 
        !          1114:         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
        !          1115:         Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
        !          1116:                "pendingBuf overflow");
        !          1117: 
        !          1118:     } while (lx < s->last_lit);
        !          1119: 
        !          1120:     send_code(s, END_BLOCK, ltree);
        !          1121:     s->last_eob_len = ltree[END_BLOCK].Len;
        !          1122: }
        !          1123: 
        !          1124: /* ===========================================================================
        !          1125:  * Check if the data type is TEXT or BINARY, using the following algorithm:
        !          1126:  * - TEXT if the two conditions below are satisfied:
        !          1127:  *    a) There are no non-portable control characters belonging to the
        !          1128:  *       "black list" (0..6, 14..25, 28..31).
        !          1129:  *    b) There is at least one printable character belonging to the
        !          1130:  *       "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
        !          1131:  * - BINARY otherwise.
        !          1132:  * - The following partially-portable control characters form a
        !          1133:  *   "gray list" that is ignored in this detection algorithm:
        !          1134:  *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
        !          1135:  * IN assertion: the fields Freq of dyn_ltree are set.
        !          1136:  */
        !          1137: local int detect_data_type(s)
        !          1138:     deflate_state *s;
        !          1139: {
        !          1140:     /* black_mask is the bit mask of black-listed bytes
        !          1141:      * set bits 0..6, 14..25, and 28..31
        !          1142:      * 0xf3ffc07f = binary 11110011111111111100000001111111
        !          1143:      */
        !          1144:     unsigned long black_mask = 0xf3ffc07fUL;
        !          1145:     int n;
        !          1146: 
        !          1147:     /* Check for non-textual ("black-listed") bytes. */
        !          1148:     for (n = 0; n <= 31; n++, black_mask >>= 1)
        !          1149:         if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0))
        !          1150:             return Z_BINARY;
        !          1151: 
        !          1152:     /* Check for textual ("white-listed") bytes. */
        !          1153:     if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
        !          1154:             || s->dyn_ltree[13].Freq != 0)
        !          1155:         return Z_TEXT;
        !          1156:     for (n = 32; n < LITERALS; n++)
        !          1157:         if (s->dyn_ltree[n].Freq != 0)
        !          1158:             return Z_TEXT;
        !          1159: 
        !          1160:     /* There are no "black-listed" or "white-listed" bytes:
        !          1161:      * this stream either is empty or has tolerated ("gray-listed") bytes only.
        !          1162:      */
        !          1163:     return Z_BINARY;
        !          1164: }
        !          1165: 
        !          1166: /* ===========================================================================
        !          1167:  * Reverse the first len bits of a code, using straightforward code (a faster
        !          1168:  * method would use a table)
        !          1169:  * IN assertion: 1 <= len <= 15
        !          1170:  */
        !          1171: local unsigned bi_reverse(code, len)
        !          1172:     unsigned code; /* the value to invert */
        !          1173:     int len;       /* its bit length */
        !          1174: {
        !          1175:     register unsigned res = 0;
        !          1176:     do {
        !          1177:         res |= code & 1;
        !          1178:         code >>= 1, res <<= 1;
        !          1179:     } while (--len > 0);
        !          1180:     return res >> 1;
        !          1181: }
        !          1182: 
        !          1183: /* ===========================================================================
        !          1184:  * Flush the bit buffer, keeping at most 7 bits in it.
        !          1185:  */
        !          1186: local void bi_flush(s)
        !          1187:     deflate_state *s;
        !          1188: {
        !          1189:     if (s->bi_valid == 16) {
        !          1190:         put_short(s, s->bi_buf);
        !          1191:         s->bi_buf = 0;
        !          1192:         s->bi_valid = 0;
        !          1193:     } else if (s->bi_valid >= 8) {
        !          1194:         put_byte(s, (Byte)s->bi_buf);
        !          1195:         s->bi_buf >>= 8;
        !          1196:         s->bi_valid -= 8;
        !          1197:     }
        !          1198: }
        !          1199: 
        !          1200: /* ===========================================================================
        !          1201:  * Flush the bit buffer and align the output on a byte boundary
        !          1202:  */
        !          1203: local void bi_windup(s)
        !          1204:     deflate_state *s;
        !          1205: {
        !          1206:     if (s->bi_valid > 8) {
        !          1207:         put_short(s, s->bi_buf);
        !          1208:     } else if (s->bi_valid > 0) {
        !          1209:         put_byte(s, (Byte)s->bi_buf);
        !          1210:     }
        !          1211:     s->bi_buf = 0;
        !          1212:     s->bi_valid = 0;
        !          1213: #ifdef DEBUG
        !          1214:     s->bits_sent = (s->bits_sent+7) & ~7;
        !          1215: #endif
        !          1216: }
        !          1217: 
        !          1218: /* ===========================================================================
        !          1219:  * Copy a stored block, storing first the length and its
        !          1220:  * one's complement if requested.
        !          1221:  */
        !          1222: local void copy_block(s, buf, len, header)
        !          1223:     deflate_state *s;
        !          1224:     charf    *buf;    /* the input data */
        !          1225:     unsigned len;     /* its length */
        !          1226:     int      header;  /* true if block header must be written */
        !          1227: {
        !          1228:     bi_windup(s);        /* align on byte boundary */
        !          1229:     s->last_eob_len = 8; /* enough lookahead for inflate */
        !          1230: 
        !          1231:     if (header) {
        !          1232:         put_short(s, (ush)len);
        !          1233:         put_short(s, (ush)~len);
        !          1234: #ifdef DEBUG
        !          1235:         s->bits_sent += 2*16;
        !          1236: #endif
        !          1237:     }
        !          1238: #ifdef DEBUG
        !          1239:     s->bits_sent += (ulg)len<<3;
        !          1240: #endif
        !          1241:     while (len--) {
        !          1242:         put_byte(s, *buf++);
        !          1243:     }
        !          1244: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>