Annotation of embedaddon/sudo/zlib/trees.c, revision 1.1.1.1

1.1       misho       1: /* trees.c -- output deflated data using Huffman coding
                      2:  * Copyright (C) 1995-2010 Jean-loup Gailly
                      3:  * detect_data_type() function provided freely by Cosmin Truta, 2006
                      4:  * For conditions of distribution and use, see copyright notice in zlib.h
                      5:  */
                      6: 
                      7: /*
                      8:  *  ALGORITHM
                      9:  *
                     10:  *      The "deflation" process uses several Huffman trees. The more
                     11:  *      common source values are represented by shorter bit sequences.
                     12:  *
                     13:  *      Each code tree is stored in a compressed form which is itself
                     14:  * a Huffman encoding of the lengths of all the code strings (in
                     15:  * ascending order by source values).  The actual code strings are
                     16:  * reconstructed from the lengths in the inflate process, as described
                     17:  * in the deflate specification.
                     18:  *
                     19:  *  REFERENCES
                     20:  *
                     21:  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
                     22:  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
                     23:  *
                     24:  *      Storer, James A.
                     25:  *          Data Compression:  Methods and Theory, pp. 49-50.
                     26:  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
                     27:  *
                     28:  *      Sedgewick, R.
                     29:  *          Algorithms, p290.
                     30:  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
                     31:  */
                     32: 
                     33: /* @(#) $Id$ */
                     34: 
                     35: /* #define GEN_TREES_H */
                     36: 
                     37: #include "deflate.h"
                     38: 
                     39: #ifdef DEBUG
                     40: #  include <ctype.h>
                     41: #endif
                     42: 
                     43: /* ===========================================================================
                     44:  * Constants
                     45:  */
                     46: 
                     47: #define MAX_BL_BITS 7
                     48: /* Bit length codes must not exceed MAX_BL_BITS bits */
                     49: 
                     50: #define END_BLOCK 256
                     51: /* end of block literal code */
                     52: 
                     53: #define REP_3_6      16
                     54: /* repeat previous bit length 3-6 times (2 bits of repeat count) */
                     55: 
                     56: #define REPZ_3_10    17
                     57: /* repeat a zero length 3-10 times  (3 bits of repeat count) */
                     58: 
                     59: #define REPZ_11_138  18
                     60: /* repeat a zero length 11-138 times  (7 bits of repeat count) */
                     61: 
                     62: local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
                     63:    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
                     64: 
                     65: local const int extra_dbits[D_CODES] /* extra bits for each distance code */
                     66:    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
                     67: 
                     68: local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
                     69:    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
                     70: 
                     71: local const uch bl_order[BL_CODES]
                     72:    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
                     73: /* The lengths of the bit length codes are sent in order of decreasing
                     74:  * probability, to avoid transmitting the lengths for unused bit length codes.
                     75:  */
                     76: 
                     77: #define Buf_size (8 * 2*sizeof(char))
                     78: /* Number of bits used within bi_buf. (bi_buf might be implemented on
                     79:  * more than 16 bits on some systems.)
                     80:  */
                     81: 
                     82: /* ===========================================================================
                     83:  * Local data. These are initialized only once.
                     84:  */
                     85: 
                     86: #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
                     87: 
                     88: #if defined(GEN_TREES_H) || !defined(STDC)
                     89: /* non ANSI compilers may not accept trees.h */
                     90: 
                     91: local ct_data static_ltree[L_CODES+2];
                     92: /* The static literal tree. Since the bit lengths are imposed, there is no
                     93:  * need for the L_CODES extra codes used during heap construction. However
                     94:  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
                     95:  * below).
                     96:  */
                     97: 
                     98: local ct_data static_dtree[D_CODES];
                     99: /* The static distance tree. (Actually a trivial tree since all codes use
                    100:  * 5 bits.)
                    101:  */
                    102: 
                    103: uch _dist_code[DIST_CODE_LEN];
                    104: /* Distance codes. The first 256 values correspond to the distances
                    105:  * 3 .. 258, the last 256 values correspond to the top 8 bits of
                    106:  * the 15 bit distances.
                    107:  */
                    108: 
                    109: uch _length_code[MAX_MATCH-MIN_MATCH+1];
                    110: /* length code for each normalized match length (0 == MIN_MATCH) */
                    111: 
                    112: local int base_length[LENGTH_CODES];
                    113: /* First normalized length for each code (0 = MIN_MATCH) */
                    114: 
                    115: local int base_dist[D_CODES];
                    116: /* First normalized distance for each code (0 = distance of 1) */
                    117: 
                    118: #else
                    119: #  include "trees.h"
                    120: #endif /* GEN_TREES_H */
                    121: 
                    122: struct static_tree_desc_s {
                    123:     const ct_data *static_tree;  /* static tree or NULL */
                    124:     const intf *extra_bits;      /* extra bits for each code or NULL */
                    125:     int     extra_base;          /* base index for extra_bits */
                    126:     int     elems;               /* max number of elements in the tree */
                    127:     int     max_length;          /* max bit length for the codes */
                    128: };
                    129: 
                    130: local static_tree_desc  static_l_desc =
                    131: {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
                    132: 
                    133: local static_tree_desc  static_d_desc =
                    134: {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
                    135: 
                    136: local static_tree_desc  static_bl_desc =
                    137: {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
                    138: 
                    139: /* ===========================================================================
                    140:  * Local (static) routines in this file.
                    141:  */
                    142: 
                    143: local void tr_static_init OF((void));
                    144: local void init_block     OF((deflate_state *s));
                    145: local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
                    146: local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
                    147: local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
                    148: local void build_tree     OF((deflate_state *s, tree_desc *desc));
                    149: local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
                    150: local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
                    151: local int  build_bl_tree  OF((deflate_state *s));
                    152: local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
                    153:                               int blcodes));
                    154: local void compress_block OF((deflate_state *s, ct_data *ltree,
                    155:                               ct_data *dtree));
                    156: local int  detect_data_type OF((deflate_state *s));
                    157: local unsigned bi_reverse OF((unsigned value, int length));
                    158: local void bi_windup      OF((deflate_state *s));
                    159: local void bi_flush       OF((deflate_state *s));
                    160: local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
                    161:                               int header));
                    162: 
                    163: #ifdef GEN_TREES_H
                    164: local void gen_trees_header OF((void));
                    165: #endif
                    166: 
                    167: #ifndef DEBUG
                    168: #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
                    169:    /* Send a code of the given tree. c and tree must not have side effects */
                    170: 
                    171: #else /* DEBUG */
                    172: #  define send_code(s, c, tree) \
                    173:      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
                    174:        send_bits(s, tree[c].Code, tree[c].Len); }
                    175: #endif
                    176: 
                    177: /* ===========================================================================
                    178:  * Output a short LSB first on the stream.
                    179:  * IN assertion: there is enough room in pendingBuf.
                    180:  */
                    181: #define put_short(s, w) { \
                    182:     put_byte(s, (uch)((w) & 0xff)); \
                    183:     put_byte(s, (uch)((ush)(w) >> 8)); \
                    184: }
                    185: 
                    186: /* ===========================================================================
                    187:  * Send a value on a given number of bits.
                    188:  * IN assertion: length <= 16 and value fits in length bits.
                    189:  */
                    190: #ifdef DEBUG
                    191: local void send_bits      OF((deflate_state *s, int value, int length));
                    192: 
                    193: local void send_bits(s, value, length)
                    194:     deflate_state *s;
                    195:     int value;  /* value to send */
                    196:     int length; /* number of bits */
                    197: {
                    198:     Tracevv((stderr," l %2d v %4x ", length, value));
                    199:     Assert(length > 0 && length <= 15, "invalid length");
                    200:     s->bits_sent += (ulg)length;
                    201: 
                    202:     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
                    203:      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
                    204:      * unused bits in value.
                    205:      */
                    206:     if (s->bi_valid > (int)Buf_size - length) {
                    207:         s->bi_buf |= (ush)value << s->bi_valid;
                    208:         put_short(s, s->bi_buf);
                    209:         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
                    210:         s->bi_valid += length - Buf_size;
                    211:     } else {
                    212:         s->bi_buf |= (ush)value << s->bi_valid;
                    213:         s->bi_valid += length;
                    214:     }
                    215: }
                    216: #else /* !DEBUG */
                    217: 
                    218: #define send_bits(s, value, length) \
                    219: { int len = length;\
                    220:   if (s->bi_valid > (int)Buf_size - len) {\
                    221:     int val = value;\
                    222:     s->bi_buf |= (ush)val << s->bi_valid;\
                    223:     put_short(s, s->bi_buf);\
                    224:     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
                    225:     s->bi_valid += len - Buf_size;\
                    226:   } else {\
                    227:     s->bi_buf |= (ush)(value) << s->bi_valid;\
                    228:     s->bi_valid += len;\
                    229:   }\
                    230: }
                    231: #endif /* DEBUG */
                    232: 
                    233: 
                    234: /* the arguments must not have side effects */
                    235: 
                    236: /* ===========================================================================
                    237:  * Initialize the various 'constant' tables.
                    238:  */
                    239: local void tr_static_init()
                    240: {
                    241: #if defined(GEN_TREES_H) || !defined(STDC)
                    242:     static int static_init_done = 0;
                    243:     int n;        /* iterates over tree elements */
                    244:     int bits;     /* bit counter */
                    245:     int length;   /* length value */
                    246:     int code;     /* code value */
                    247:     int dist;     /* distance index */
                    248:     ush bl_count[MAX_BITS+1];
                    249:     /* number of codes at each bit length for an optimal tree */
                    250: 
                    251:     if (static_init_done) return;
                    252: 
                    253:     /* For some embedded targets, global variables are not initialized: */
                    254: #ifdef NO_INIT_GLOBAL_POINTERS
                    255:     static_l_desc.static_tree = static_ltree;
                    256:     static_l_desc.extra_bits = extra_lbits;
                    257:     static_d_desc.static_tree = static_dtree;
                    258:     static_d_desc.extra_bits = extra_dbits;
                    259:     static_bl_desc.extra_bits = extra_blbits;
                    260: #endif
                    261: 
                    262:     /* Initialize the mapping length (0..255) -> length code (0..28) */
                    263:     length = 0;
                    264:     for (code = 0; code < LENGTH_CODES-1; code++) {
                    265:         base_length[code] = length;
                    266:         for (n = 0; n < (1<<extra_lbits[code]); n++) {
                    267:             _length_code[length++] = (uch)code;
                    268:         }
                    269:     }
                    270:     Assert (length == 256, "tr_static_init: length != 256");
                    271:     /* Note that the length 255 (match length 258) can be represented
                    272:      * in two different ways: code 284 + 5 bits or code 285, so we
                    273:      * overwrite length_code[255] to use the best encoding:
                    274:      */
                    275:     _length_code[length-1] = (uch)code;
                    276: 
                    277:     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
                    278:     dist = 0;
                    279:     for (code = 0 ; code < 16; code++) {
                    280:         base_dist[code] = dist;
                    281:         for (n = 0; n < (1<<extra_dbits[code]); n++) {
                    282:             _dist_code[dist++] = (uch)code;
                    283:         }
                    284:     }
                    285:     Assert (dist == 256, "tr_static_init: dist != 256");
                    286:     dist >>= 7; /* from now on, all distances are divided by 128 */
                    287:     for ( ; code < D_CODES; code++) {
                    288:         base_dist[code] = dist << 7;
                    289:         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
                    290:             _dist_code[256 + dist++] = (uch)code;
                    291:         }
                    292:     }
                    293:     Assert (dist == 256, "tr_static_init: 256+dist != 512");
                    294: 
                    295:     /* Construct the codes of the static literal tree */
                    296:     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
                    297:     n = 0;
                    298:     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
                    299:     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
                    300:     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
                    301:     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
                    302:     /* Codes 286 and 287 do not exist, but we must include them in the
                    303:      * tree construction to get a canonical Huffman tree (longest code
                    304:      * all ones)
                    305:      */
                    306:     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
                    307: 
                    308:     /* The static distance tree is trivial: */
                    309:     for (n = 0; n < D_CODES; n++) {
                    310:         static_dtree[n].Len = 5;
                    311:         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
                    312:     }
                    313:     static_init_done = 1;
                    314: 
                    315: #  ifdef GEN_TREES_H
                    316:     gen_trees_header();
                    317: #  endif
                    318: #endif /* defined(GEN_TREES_H) || !defined(STDC) */
                    319: }
                    320: 
                    321: /* ===========================================================================
                    322:  * Genererate the file trees.h describing the static trees.
                    323:  */
                    324: #ifdef GEN_TREES_H
                    325: #  ifndef DEBUG
                    326: #    include <stdio.h>
                    327: #  endif
                    328: 
                    329: #  define SEPARATOR(i, last, width) \
                    330:       ((i) == (last)? "\n};\n\n" :    \
                    331:        ((i) % (width) == (width)-1 ? ",\n" : ", "))
                    332: 
                    333: void gen_trees_header()
                    334: {
                    335:     FILE *header = fopen("trees.h", "w");
                    336:     int i;
                    337: 
                    338:     Assert (header != NULL, "Can't open trees.h");
                    339:     fprintf(header,
                    340:             "/* header created automatically with -DGEN_TREES_H */\n\n");
                    341: 
                    342:     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
                    343:     for (i = 0; i < L_CODES+2; i++) {
                    344:         fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
                    345:                 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
                    346:     }
                    347: 
                    348:     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
                    349:     for (i = 0; i < D_CODES; i++) {
                    350:         fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
                    351:                 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
                    352:     }
                    353: 
                    354:     fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
                    355:     for (i = 0; i < DIST_CODE_LEN; i++) {
                    356:         fprintf(header, "%2u%s", _dist_code[i],
                    357:                 SEPARATOR(i, DIST_CODE_LEN-1, 20));
                    358:     }
                    359: 
                    360:     fprintf(header,
                    361:         "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
                    362:     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
                    363:         fprintf(header, "%2u%s", _length_code[i],
                    364:                 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
                    365:     }
                    366: 
                    367:     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
                    368:     for (i = 0; i < LENGTH_CODES; i++) {
                    369:         fprintf(header, "%1u%s", base_length[i],
                    370:                 SEPARATOR(i, LENGTH_CODES-1, 20));
                    371:     }
                    372: 
                    373:     fprintf(header, "local const int base_dist[D_CODES] = {\n");
                    374:     for (i = 0; i < D_CODES; i++) {
                    375:         fprintf(header, "%5u%s", base_dist[i],
                    376:                 SEPARATOR(i, D_CODES-1, 10));
                    377:     }
                    378: 
                    379:     fclose(header);
                    380: }
                    381: #endif /* GEN_TREES_H */
                    382: 
                    383: /* ===========================================================================
                    384:  * Initialize the tree data structures for a new zlib stream.
                    385:  */
                    386: void ZLIB_INTERNAL _tr_init(s)
                    387:     deflate_state *s;
                    388: {
                    389:     tr_static_init();
                    390: 
                    391:     s->l_desc.dyn_tree = s->dyn_ltree;
                    392:     s->l_desc.stat_desc = &static_l_desc;
                    393: 
                    394:     s->d_desc.dyn_tree = s->dyn_dtree;
                    395:     s->d_desc.stat_desc = &static_d_desc;
                    396: 
                    397:     s->bl_desc.dyn_tree = s->bl_tree;
                    398:     s->bl_desc.stat_desc = &static_bl_desc;
                    399: 
                    400:     s->bi_buf = 0;
                    401:     s->bi_valid = 0;
                    402:     s->last_eob_len = 8; /* enough lookahead for inflate */
                    403: #ifdef DEBUG
                    404:     s->compressed_len = 0L;
                    405:     s->bits_sent = 0L;
                    406: #endif
                    407: 
                    408:     /* Initialize the first block of the first file: */
                    409:     init_block(s);
                    410: }
                    411: 
                    412: /* ===========================================================================
                    413:  * Initialize a new block.
                    414:  */
                    415: local void init_block(s)
                    416:     deflate_state *s;
                    417: {
                    418:     int n; /* iterates over tree elements */
                    419: 
                    420:     /* Initialize the trees. */
                    421:     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
                    422:     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
                    423:     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
                    424: 
                    425:     s->dyn_ltree[END_BLOCK].Freq = 1;
                    426:     s->opt_len = s->static_len = 0L;
                    427:     s->last_lit = s->matches = 0;
                    428: }
                    429: 
                    430: #define SMALLEST 1
                    431: /* Index within the heap array of least frequent node in the Huffman tree */
                    432: 
                    433: 
                    434: /* ===========================================================================
                    435:  * Remove the smallest element from the heap and recreate the heap with
                    436:  * one less element. Updates heap and heap_len.
                    437:  */
                    438: #define pqremove(s, tree, top) \
                    439: {\
                    440:     top = s->heap[SMALLEST]; \
                    441:     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
                    442:     pqdownheap(s, tree, SMALLEST); \
                    443: }
                    444: 
                    445: /* ===========================================================================
                    446:  * Compares to subtrees, using the tree depth as tie breaker when
                    447:  * the subtrees have equal frequency. This minimizes the worst case length.
                    448:  */
                    449: #define smaller(tree, n, m, depth) \
                    450:    (tree[n].Freq < tree[m].Freq || \
                    451:    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
                    452: 
                    453: /* ===========================================================================
                    454:  * Restore the heap property by moving down the tree starting at node k,
                    455:  * exchanging a node with the smallest of its two sons if necessary, stopping
                    456:  * when the heap property is re-established (each father smaller than its
                    457:  * two sons).
                    458:  */
                    459: local void pqdownheap(s, tree, k)
                    460:     deflate_state *s;
                    461:     ct_data *tree;  /* the tree to restore */
                    462:     int k;               /* node to move down */
                    463: {
                    464:     int v = s->heap[k];
                    465:     int j = k << 1;  /* left son of k */
                    466:     while (j <= s->heap_len) {
                    467:         /* Set j to the smallest of the two sons: */
                    468:         if (j < s->heap_len &&
                    469:             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
                    470:             j++;
                    471:         }
                    472:         /* Exit if v is smaller than both sons */
                    473:         if (smaller(tree, v, s->heap[j], s->depth)) break;
                    474: 
                    475:         /* Exchange v with the smallest son */
                    476:         s->heap[k] = s->heap[j];  k = j;
                    477: 
                    478:         /* And continue down the tree, setting j to the left son of k */
                    479:         j <<= 1;
                    480:     }
                    481:     s->heap[k] = v;
                    482: }
                    483: 
                    484: /* ===========================================================================
                    485:  * Compute the optimal bit lengths for a tree and update the total bit length
                    486:  * for the current block.
                    487:  * IN assertion: the fields freq and dad are set, heap[heap_max] and
                    488:  *    above are the tree nodes sorted by increasing frequency.
                    489:  * OUT assertions: the field len is set to the optimal bit length, the
                    490:  *     array bl_count contains the frequencies for each bit length.
                    491:  *     The length opt_len is updated; static_len is also updated if stree is
                    492:  *     not null.
                    493:  */
                    494: local void gen_bitlen(s, desc)
                    495:     deflate_state *s;
                    496:     tree_desc *desc;    /* the tree descriptor */
                    497: {
                    498:     ct_data *tree        = desc->dyn_tree;
                    499:     int max_code         = desc->max_code;
                    500:     const ct_data *stree = desc->stat_desc->static_tree;
                    501:     const intf *extra    = desc->stat_desc->extra_bits;
                    502:     int base             = desc->stat_desc->extra_base;
                    503:     int max_length       = desc->stat_desc->max_length;
                    504:     int h;              /* heap index */
                    505:     int n, m;           /* iterate over the tree elements */
                    506:     int bits;           /* bit length */
                    507:     int xbits;          /* extra bits */
                    508:     ush f;              /* frequency */
                    509:     int overflow = 0;   /* number of elements with bit length too large */
                    510: 
                    511:     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
                    512: 
                    513:     /* In a first pass, compute the optimal bit lengths (which may
                    514:      * overflow in the case of the bit length tree).
                    515:      */
                    516:     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
                    517: 
                    518:     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
                    519:         n = s->heap[h];
                    520:         bits = tree[tree[n].Dad].Len + 1;
                    521:         if (bits > max_length) bits = max_length, overflow++;
                    522:         tree[n].Len = (ush)bits;
                    523:         /* We overwrite tree[n].Dad which is no longer needed */
                    524: 
                    525:         if (n > max_code) continue; /* not a leaf node */
                    526: 
                    527:         s->bl_count[bits]++;
                    528:         xbits = 0;
                    529:         if (n >= base) xbits = extra[n-base];
                    530:         f = tree[n].Freq;
                    531:         s->opt_len += (ulg)f * (bits + xbits);
                    532:         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
                    533:     }
                    534:     if (overflow == 0) return;
                    535: 
                    536:     Trace((stderr,"\nbit length overflow\n"));
                    537:     /* This happens for example on obj2 and pic of the Calgary corpus */
                    538: 
                    539:     /* Find the first bit length which could increase: */
                    540:     do {
                    541:         bits = max_length-1;
                    542:         while (s->bl_count[bits] == 0) bits--;
                    543:         s->bl_count[bits]--;      /* move one leaf down the tree */
                    544:         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
                    545:         s->bl_count[max_length]--;
                    546:         /* The brother of the overflow item also moves one step up,
                    547:          * but this does not affect bl_count[max_length]
                    548:          */
                    549:         overflow -= 2;
                    550:     } while (overflow > 0);
                    551: 
                    552:     /* Now recompute all bit lengths, scanning in increasing frequency.
                    553:      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
                    554:      * lengths instead of fixing only the wrong ones. This idea is taken
                    555:      * from 'ar' written by Haruhiko Okumura.)
                    556:      */
                    557:     for (bits = max_length; bits != 0; bits--) {
                    558:         n = s->bl_count[bits];
                    559:         while (n != 0) {
                    560:             m = s->heap[--h];
                    561:             if (m > max_code) continue;
                    562:             if ((unsigned) tree[m].Len != (unsigned) bits) {
                    563:                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
                    564:                 s->opt_len += ((long)bits - (long)tree[m].Len)
                    565:                               *(long)tree[m].Freq;
                    566:                 tree[m].Len = (ush)bits;
                    567:             }
                    568:             n--;
                    569:         }
                    570:     }
                    571: }
                    572: 
                    573: /* ===========================================================================
                    574:  * Generate the codes for a given tree and bit counts (which need not be
                    575:  * optimal).
                    576:  * IN assertion: the array bl_count contains the bit length statistics for
                    577:  * the given tree and the field len is set for all tree elements.
                    578:  * OUT assertion: the field code is set for all tree elements of non
                    579:  *     zero code length.
                    580:  */
                    581: local void gen_codes (tree, max_code, bl_count)
                    582:     ct_data *tree;             /* the tree to decorate */
                    583:     int max_code;              /* largest code with non zero frequency */
                    584:     ushf *bl_count;            /* number of codes at each bit length */
                    585: {
                    586:     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
                    587:     ush code = 0;              /* running code value */
                    588:     int bits;                  /* bit index */
                    589:     int n;                     /* code index */
                    590: 
                    591:     /* The distribution counts are first used to generate the code values
                    592:      * without bit reversal.
                    593:      */
                    594:     for (bits = 1; bits <= MAX_BITS; bits++) {
                    595:         next_code[bits] = code = (code + bl_count[bits-1]) << 1;
                    596:     }
                    597:     /* Check that the bit counts in bl_count are consistent. The last code
                    598:      * must be all ones.
                    599:      */
                    600:     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
                    601:             "inconsistent bit counts");
                    602:     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
                    603: 
                    604:     for (n = 0;  n <= max_code; n++) {
                    605:         int len = tree[n].Len;
                    606:         if (len == 0) continue;
                    607:         /* Now reverse the bits */
                    608:         tree[n].Code = bi_reverse(next_code[len]++, len);
                    609: 
                    610:         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
                    611:              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
                    612:     }
                    613: }
                    614: 
                    615: /* ===========================================================================
                    616:  * Construct one Huffman tree and assigns the code bit strings and lengths.
                    617:  * Update the total bit length for the current block.
                    618:  * IN assertion: the field freq is set for all tree elements.
                    619:  * OUT assertions: the fields len and code are set to the optimal bit length
                    620:  *     and corresponding code. The length opt_len is updated; static_len is
                    621:  *     also updated if stree is not null. The field max_code is set.
                    622:  */
                    623: local void build_tree(s, desc)
                    624:     deflate_state *s;
                    625:     tree_desc *desc; /* the tree descriptor */
                    626: {
                    627:     ct_data *tree         = desc->dyn_tree;
                    628:     const ct_data *stree  = desc->stat_desc->static_tree;
                    629:     int elems             = desc->stat_desc->elems;
                    630:     int n, m;          /* iterate over heap elements */
                    631:     int max_code = -1; /* largest code with non zero frequency */
                    632:     int node;          /* new node being created */
                    633: 
                    634:     /* Construct the initial heap, with least frequent element in
                    635:      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
                    636:      * heap[0] is not used.
                    637:      */
                    638:     s->heap_len = 0, s->heap_max = HEAP_SIZE;
                    639: 
                    640:     for (n = 0; n < elems; n++) {
                    641:         if (tree[n].Freq != 0) {
                    642:             s->heap[++(s->heap_len)] = max_code = n;
                    643:             s->depth[n] = 0;
                    644:         } else {
                    645:             tree[n].Len = 0;
                    646:         }
                    647:     }
                    648: 
                    649:     /* The pkzip format requires that at least one distance code exists,
                    650:      * and that at least one bit should be sent even if there is only one
                    651:      * possible code. So to avoid special checks later on we force at least
                    652:      * two codes of non zero frequency.
                    653:      */
                    654:     while (s->heap_len < 2) {
                    655:         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
                    656:         tree[node].Freq = 1;
                    657:         s->depth[node] = 0;
                    658:         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
                    659:         /* node is 0 or 1 so it does not have extra bits */
                    660:     }
                    661:     desc->max_code = max_code;
                    662: 
                    663:     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
                    664:      * establish sub-heaps of increasing lengths:
                    665:      */
                    666:     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
                    667: 
                    668:     /* Construct the Huffman tree by repeatedly combining the least two
                    669:      * frequent nodes.
                    670:      */
                    671:     node = elems;              /* next internal node of the tree */
                    672:     do {
                    673:         pqremove(s, tree, n);  /* n = node of least frequency */
                    674:         m = s->heap[SMALLEST]; /* m = node of next least frequency */
                    675: 
                    676:         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
                    677:         s->heap[--(s->heap_max)] = m;
                    678: 
                    679:         /* Create a new node father of n and m */
                    680:         tree[node].Freq = tree[n].Freq + tree[m].Freq;
                    681:         s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
                    682:                                 s->depth[n] : s->depth[m]) + 1);
                    683:         tree[n].Dad = tree[m].Dad = (ush)node;
                    684: #ifdef DUMP_BL_TREE
                    685:         if (tree == s->bl_tree) {
                    686:             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
                    687:                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
                    688:         }
                    689: #endif
                    690:         /* and insert the new node in the heap */
                    691:         s->heap[SMALLEST] = node++;
                    692:         pqdownheap(s, tree, SMALLEST);
                    693: 
                    694:     } while (s->heap_len >= 2);
                    695: 
                    696:     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
                    697: 
                    698:     /* At this point, the fields freq and dad are set. We can now
                    699:      * generate the bit lengths.
                    700:      */
                    701:     gen_bitlen(s, (tree_desc *)desc);
                    702: 
                    703:     /* The field len is now set, we can generate the bit codes */
                    704:     gen_codes ((ct_data *)tree, max_code, s->bl_count);
                    705: }
                    706: 
                    707: /* ===========================================================================
                    708:  * Scan a literal or distance tree to determine the frequencies of the codes
                    709:  * in the bit length tree.
                    710:  */
                    711: local void scan_tree (s, tree, max_code)
                    712:     deflate_state *s;
                    713:     ct_data *tree;   /* the tree to be scanned */
                    714:     int max_code;    /* and its largest code of non zero frequency */
                    715: {
                    716:     int n;                     /* iterates over all tree elements */
                    717:     int prevlen = -1;          /* last emitted length */
                    718:     int curlen;                /* length of current code */
                    719:     int nextlen = tree[0].Len; /* length of next code */
                    720:     int count = 0;             /* repeat count of the current code */
                    721:     int max_count = 7;         /* max repeat count */
                    722:     int min_count = 4;         /* min repeat count */
                    723: 
                    724:     if (nextlen == 0) max_count = 138, min_count = 3;
                    725:     tree[max_code+1].Len = (ush)0xffff; /* guard */
                    726: 
                    727:     for (n = 0; n <= max_code; n++) {
                    728:         curlen = nextlen; nextlen = tree[n+1].Len;
                    729:         if (++count < max_count && curlen == nextlen) {
                    730:             continue;
                    731:         } else if (count < min_count) {
                    732:             s->bl_tree[curlen].Freq += count;
                    733:         } else if (curlen != 0) {
                    734:             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
                    735:             s->bl_tree[REP_3_6].Freq++;
                    736:         } else if (count <= 10) {
                    737:             s->bl_tree[REPZ_3_10].Freq++;
                    738:         } else {
                    739:             s->bl_tree[REPZ_11_138].Freq++;
                    740:         }
                    741:         count = 0; prevlen = curlen;
                    742:         if (nextlen == 0) {
                    743:             max_count = 138, min_count = 3;
                    744:         } else if (curlen == nextlen) {
                    745:             max_count = 6, min_count = 3;
                    746:         } else {
                    747:             max_count = 7, min_count = 4;
                    748:         }
                    749:     }
                    750: }
                    751: 
                    752: /* ===========================================================================
                    753:  * Send a literal or distance tree in compressed form, using the codes in
                    754:  * bl_tree.
                    755:  */
                    756: local void send_tree (s, tree, max_code)
                    757:     deflate_state *s;
                    758:     ct_data *tree; /* the tree to be scanned */
                    759:     int max_code;       /* and its largest code of non zero frequency */
                    760: {
                    761:     int n;                     /* iterates over all tree elements */
                    762:     int prevlen = -1;          /* last emitted length */
                    763:     int curlen;                /* length of current code */
                    764:     int nextlen = tree[0].Len; /* length of next code */
                    765:     int count = 0;             /* repeat count of the current code */
                    766:     int max_count = 7;         /* max repeat count */
                    767:     int min_count = 4;         /* min repeat count */
                    768: 
                    769:     /* tree[max_code+1].Len = -1; */  /* guard already set */
                    770:     if (nextlen == 0) max_count = 138, min_count = 3;
                    771: 
                    772:     for (n = 0; n <= max_code; n++) {
                    773:         curlen = nextlen; nextlen = tree[n+1].Len;
                    774:         if (++count < max_count && curlen == nextlen) {
                    775:             continue;
                    776:         } else if (count < min_count) {
                    777:             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
                    778: 
                    779:         } else if (curlen != 0) {
                    780:             if (curlen != prevlen) {
                    781:                 send_code(s, curlen, s->bl_tree); count--;
                    782:             }
                    783:             Assert(count >= 3 && count <= 6, " 3_6?");
                    784:             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
                    785: 
                    786:         } else if (count <= 10) {
                    787:             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
                    788: 
                    789:         } else {
                    790:             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
                    791:         }
                    792:         count = 0; prevlen = curlen;
                    793:         if (nextlen == 0) {
                    794:             max_count = 138, min_count = 3;
                    795:         } else if (curlen == nextlen) {
                    796:             max_count = 6, min_count = 3;
                    797:         } else {
                    798:             max_count = 7, min_count = 4;
                    799:         }
                    800:     }
                    801: }
                    802: 
                    803: /* ===========================================================================
                    804:  * Construct the Huffman tree for the bit lengths and return the index in
                    805:  * bl_order of the last bit length code to send.
                    806:  */
                    807: local int build_bl_tree(s)
                    808:     deflate_state *s;
                    809: {
                    810:     int max_blindex;  /* index of last bit length code of non zero freq */
                    811: 
                    812:     /* Determine the bit length frequencies for literal and distance trees */
                    813:     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
                    814:     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
                    815: 
                    816:     /* Build the bit length tree: */
                    817:     build_tree(s, (tree_desc *)(&(s->bl_desc)));
                    818:     /* opt_len now includes the length of the tree representations, except
                    819:      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
                    820:      */
                    821: 
                    822:     /* Determine the number of bit length codes to send. The pkzip format
                    823:      * requires that at least 4 bit length codes be sent. (appnote.txt says
                    824:      * 3 but the actual value used is 4.)
                    825:      */
                    826:     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
                    827:         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
                    828:     }
                    829:     /* Update opt_len to include the bit length tree and counts */
                    830:     s->opt_len += 3*(max_blindex+1) + 5+5+4;
                    831:     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
                    832:             s->opt_len, s->static_len));
                    833: 
                    834:     return max_blindex;
                    835: }
                    836: 
                    837: /* ===========================================================================
                    838:  * Send the header for a block using dynamic Huffman trees: the counts, the
                    839:  * lengths of the bit length codes, the literal tree and the distance tree.
                    840:  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
                    841:  */
                    842: local void send_all_trees(s, lcodes, dcodes, blcodes)
                    843:     deflate_state *s;
                    844:     int lcodes, dcodes, blcodes; /* number of codes for each tree */
                    845: {
                    846:     int rank;                    /* index in bl_order */
                    847: 
                    848:     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
                    849:     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
                    850:             "too many codes");
                    851:     Tracev((stderr, "\nbl counts: "));
                    852:     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
                    853:     send_bits(s, dcodes-1,   5);
                    854:     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
                    855:     for (rank = 0; rank < blcodes; rank++) {
                    856:         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
                    857:         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
                    858:     }
                    859:     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
                    860: 
                    861:     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
                    862:     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
                    863: 
                    864:     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
                    865:     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
                    866: }
                    867: 
                    868: /* ===========================================================================
                    869:  * Send a stored block
                    870:  */
                    871: void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
                    872:     deflate_state *s;
                    873:     charf *buf;       /* input block */
                    874:     ulg stored_len;   /* length of input block */
                    875:     int last;         /* one if this is the last block for a file */
                    876: {
                    877:     send_bits(s, (STORED_BLOCK<<1)+last, 3);    /* send block type */
                    878: #ifdef DEBUG
                    879:     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
                    880:     s->compressed_len += (stored_len + 4) << 3;
                    881: #endif
                    882:     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
                    883: }
                    884: 
                    885: /* ===========================================================================
                    886:  * Send one empty static block to give enough lookahead for inflate.
                    887:  * This takes 10 bits, of which 7 may remain in the bit buffer.
                    888:  * The current inflate code requires 9 bits of lookahead. If the
                    889:  * last two codes for the previous block (real code plus EOB) were coded
                    890:  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
                    891:  * the last real code. In this case we send two empty static blocks instead
                    892:  * of one. (There are no problems if the previous block is stored or fixed.)
                    893:  * To simplify the code, we assume the worst case of last real code encoded
                    894:  * on one bit only.
                    895:  */
                    896: void ZLIB_INTERNAL _tr_align(s)
                    897:     deflate_state *s;
                    898: {
                    899:     send_bits(s, STATIC_TREES<<1, 3);
                    900:     send_code(s, END_BLOCK, static_ltree);
                    901: #ifdef DEBUG
                    902:     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
                    903: #endif
                    904:     bi_flush(s);
                    905:     /* Of the 10 bits for the empty block, we have already sent
                    906:      * (10 - bi_valid) bits. The lookahead for the last real code (before
                    907:      * the EOB of the previous block) was thus at least one plus the length
                    908:      * of the EOB plus what we have just sent of the empty static block.
                    909:      */
                    910:     if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
                    911:         send_bits(s, STATIC_TREES<<1, 3);
                    912:         send_code(s, END_BLOCK, static_ltree);
                    913: #ifdef DEBUG
                    914:         s->compressed_len += 10L;
                    915: #endif
                    916:         bi_flush(s);
                    917:     }
                    918:     s->last_eob_len = 7;
                    919: }
                    920: 
                    921: /* ===========================================================================
                    922:  * Determine the best encoding for the current block: dynamic trees, static
                    923:  * trees or store, and output the encoded block to the zip file.
                    924:  */
                    925: void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
                    926:     deflate_state *s;
                    927:     charf *buf;       /* input block, or NULL if too old */
                    928:     ulg stored_len;   /* length of input block */
                    929:     int last;         /* one if this is the last block for a file */
                    930: {
                    931:     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
                    932:     int max_blindex = 0;  /* index of last bit length code of non zero freq */
                    933: 
                    934:     /* Build the Huffman trees unless a stored block is forced */
                    935:     if (s->level > 0) {
                    936: 
                    937:         /* Check if the file is binary or text */
                    938:         if (s->strm->data_type == Z_UNKNOWN)
                    939:             s->strm->data_type = detect_data_type(s);
                    940: 
                    941:         /* Construct the literal and distance trees */
                    942:         build_tree(s, (tree_desc *)(&(s->l_desc)));
                    943:         Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
                    944:                 s->static_len));
                    945: 
                    946:         build_tree(s, (tree_desc *)(&(s->d_desc)));
                    947:         Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
                    948:                 s->static_len));
                    949:         /* At this point, opt_len and static_len are the total bit lengths of
                    950:          * the compressed block data, excluding the tree representations.
                    951:          */
                    952: 
                    953:         /* Build the bit length tree for the above two trees, and get the index
                    954:          * in bl_order of the last bit length code to send.
                    955:          */
                    956:         max_blindex = build_bl_tree(s);
                    957: 
                    958:         /* Determine the best encoding. Compute the block lengths in bytes. */
                    959:         opt_lenb = (s->opt_len+3+7)>>3;
                    960:         static_lenb = (s->static_len+3+7)>>3;
                    961: 
                    962:         Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
                    963:                 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
                    964:                 s->last_lit));
                    965: 
                    966:         if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
                    967: 
                    968:     } else {
                    969:         Assert(buf != (char*)0, "lost buf");
                    970:         opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
                    971:     }
                    972: 
                    973: #ifdef FORCE_STORED
                    974:     if (buf != (char*)0) { /* force stored block */
                    975: #else
                    976:     if (stored_len+4 <= opt_lenb && buf != (char*)0) {
                    977:                        /* 4: two words for the lengths */
                    978: #endif
                    979:         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
                    980:          * Otherwise we can't have processed more than WSIZE input bytes since
                    981:          * the last block flush, because compression would have been
                    982:          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
                    983:          * transform a block into a stored block.
                    984:          */
                    985:         _tr_stored_block(s, buf, stored_len, last);
                    986: 
                    987: #ifdef FORCE_STATIC
                    988:     } else if (static_lenb >= 0) { /* force static trees */
                    989: #else
                    990:     } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
                    991: #endif
                    992:         send_bits(s, (STATIC_TREES<<1)+last, 3);
                    993:         compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
                    994: #ifdef DEBUG
                    995:         s->compressed_len += 3 + s->static_len;
                    996: #endif
                    997:     } else {
                    998:         send_bits(s, (DYN_TREES<<1)+last, 3);
                    999:         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
                   1000:                        max_blindex+1);
                   1001:         compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
                   1002: #ifdef DEBUG
                   1003:         s->compressed_len += 3 + s->opt_len;
                   1004: #endif
                   1005:     }
                   1006:     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
                   1007:     /* The above check is made mod 2^32, for files larger than 512 MB
                   1008:      * and uLong implemented on 32 bits.
                   1009:      */
                   1010:     init_block(s);
                   1011: 
                   1012:     if (last) {
                   1013:         bi_windup(s);
                   1014: #ifdef DEBUG
                   1015:         s->compressed_len += 7;  /* align on byte boundary */
                   1016: #endif
                   1017:     }
                   1018:     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
                   1019:            s->compressed_len-7*last));
                   1020: }
                   1021: 
                   1022: /* ===========================================================================
                   1023:  * Save the match info and tally the frequency counts. Return true if
                   1024:  * the current block must be flushed.
                   1025:  */
                   1026: int ZLIB_INTERNAL _tr_tally (s, dist, lc)
                   1027:     deflate_state *s;
                   1028:     unsigned dist;  /* distance of matched string */
                   1029:     unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
                   1030: {
                   1031:     s->d_buf[s->last_lit] = (ush)dist;
                   1032:     s->l_buf[s->last_lit++] = (uch)lc;
                   1033:     if (dist == 0) {
                   1034:         /* lc is the unmatched char */
                   1035:         s->dyn_ltree[lc].Freq++;
                   1036:     } else {
                   1037:         s->matches++;
                   1038:         /* Here, lc is the match length - MIN_MATCH */
                   1039:         dist--;             /* dist = match distance - 1 */
                   1040:         Assert((ush)dist < (ush)MAX_DIST(s) &&
                   1041:                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
                   1042:                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
                   1043: 
                   1044:         s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
                   1045:         s->dyn_dtree[d_code(dist)].Freq++;
                   1046:     }
                   1047: 
                   1048: #ifdef TRUNCATE_BLOCK
                   1049:     /* Try to guess if it is profitable to stop the current block here */
                   1050:     if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
                   1051:         /* Compute an upper bound for the compressed length */
                   1052:         ulg out_length = (ulg)s->last_lit*8L;
                   1053:         ulg in_length = (ulg)((long)s->strstart - s->block_start);
                   1054:         int dcode;
                   1055:         for (dcode = 0; dcode < D_CODES; dcode++) {
                   1056:             out_length += (ulg)s->dyn_dtree[dcode].Freq *
                   1057:                 (5L+extra_dbits[dcode]);
                   1058:         }
                   1059:         out_length >>= 3;
                   1060:         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
                   1061:                s->last_lit, in_length, out_length,
                   1062:                100L - out_length*100L/in_length));
                   1063:         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
                   1064:     }
                   1065: #endif
                   1066:     return (s->last_lit == s->lit_bufsize-1);
                   1067:     /* We avoid equality with lit_bufsize because of wraparound at 64K
                   1068:      * on 16 bit machines and because stored blocks are restricted to
                   1069:      * 64K-1 bytes.
                   1070:      */
                   1071: }
                   1072: 
                   1073: /* ===========================================================================
                   1074:  * Send the block data compressed using the given Huffman trees
                   1075:  */
                   1076: local void compress_block(s, ltree, dtree)
                   1077:     deflate_state *s;
                   1078:     ct_data *ltree; /* literal tree */
                   1079:     ct_data *dtree; /* distance tree */
                   1080: {
                   1081:     unsigned dist;      /* distance of matched string */
                   1082:     int lc;             /* match length or unmatched char (if dist == 0) */
                   1083:     unsigned lx = 0;    /* running index in l_buf */
                   1084:     unsigned code;      /* the code to send */
                   1085:     int extra;          /* number of extra bits to send */
                   1086: 
                   1087:     if (s->last_lit != 0) do {
                   1088:         dist = s->d_buf[lx];
                   1089:         lc = s->l_buf[lx++];
                   1090:         if (dist == 0) {
                   1091:             send_code(s, lc, ltree); /* send a literal byte */
                   1092:             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
                   1093:         } else {
                   1094:             /* Here, lc is the match length - MIN_MATCH */
                   1095:             code = _length_code[lc];
                   1096:             send_code(s, code+LITERALS+1, ltree); /* send the length code */
                   1097:             extra = extra_lbits[code];
                   1098:             if (extra != 0) {
                   1099:                 lc -= base_length[code];
                   1100:                 send_bits(s, lc, extra);       /* send the extra length bits */
                   1101:             }
                   1102:             dist--; /* dist is now the match distance - 1 */
                   1103:             code = d_code(dist);
                   1104:             Assert (code < D_CODES, "bad d_code");
                   1105: 
                   1106:             send_code(s, code, dtree);       /* send the distance code */
                   1107:             extra = extra_dbits[code];
                   1108:             if (extra != 0) {
                   1109:                 dist -= base_dist[code];
                   1110:                 send_bits(s, dist, extra);   /* send the extra distance bits */
                   1111:             }
                   1112:         } /* literal or match pair ? */
                   1113: 
                   1114:         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
                   1115:         Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
                   1116:                "pendingBuf overflow");
                   1117: 
                   1118:     } while (lx < s->last_lit);
                   1119: 
                   1120:     send_code(s, END_BLOCK, ltree);
                   1121:     s->last_eob_len = ltree[END_BLOCK].Len;
                   1122: }
                   1123: 
                   1124: /* ===========================================================================
                   1125:  * Check if the data type is TEXT or BINARY, using the following algorithm:
                   1126:  * - TEXT if the two conditions below are satisfied:
                   1127:  *    a) There are no non-portable control characters belonging to the
                   1128:  *       "black list" (0..6, 14..25, 28..31).
                   1129:  *    b) There is at least one printable character belonging to the
                   1130:  *       "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
                   1131:  * - BINARY otherwise.
                   1132:  * - The following partially-portable control characters form a
                   1133:  *   "gray list" that is ignored in this detection algorithm:
                   1134:  *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
                   1135:  * IN assertion: the fields Freq of dyn_ltree are set.
                   1136:  */
                   1137: local int detect_data_type(s)
                   1138:     deflate_state *s;
                   1139: {
                   1140:     /* black_mask is the bit mask of black-listed bytes
                   1141:      * set bits 0..6, 14..25, and 28..31
                   1142:      * 0xf3ffc07f = binary 11110011111111111100000001111111
                   1143:      */
                   1144:     unsigned long black_mask = 0xf3ffc07fUL;
                   1145:     int n;
                   1146: 
                   1147:     /* Check for non-textual ("black-listed") bytes. */
                   1148:     for (n = 0; n <= 31; n++, black_mask >>= 1)
                   1149:         if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0))
                   1150:             return Z_BINARY;
                   1151: 
                   1152:     /* Check for textual ("white-listed") bytes. */
                   1153:     if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
                   1154:             || s->dyn_ltree[13].Freq != 0)
                   1155:         return Z_TEXT;
                   1156:     for (n = 32; n < LITERALS; n++)
                   1157:         if (s->dyn_ltree[n].Freq != 0)
                   1158:             return Z_TEXT;
                   1159: 
                   1160:     /* There are no "black-listed" or "white-listed" bytes:
                   1161:      * this stream either is empty or has tolerated ("gray-listed") bytes only.
                   1162:      */
                   1163:     return Z_BINARY;
                   1164: }
                   1165: 
                   1166: /* ===========================================================================
                   1167:  * Reverse the first len bits of a code, using straightforward code (a faster
                   1168:  * method would use a table)
                   1169:  * IN assertion: 1 <= len <= 15
                   1170:  */
                   1171: local unsigned bi_reverse(code, len)
                   1172:     unsigned code; /* the value to invert */
                   1173:     int len;       /* its bit length */
                   1174: {
                   1175:     register unsigned res = 0;
                   1176:     do {
                   1177:         res |= code & 1;
                   1178:         code >>= 1, res <<= 1;
                   1179:     } while (--len > 0);
                   1180:     return res >> 1;
                   1181: }
                   1182: 
                   1183: /* ===========================================================================
                   1184:  * Flush the bit buffer, keeping at most 7 bits in it.
                   1185:  */
                   1186: local void bi_flush(s)
                   1187:     deflate_state *s;
                   1188: {
                   1189:     if (s->bi_valid == 16) {
                   1190:         put_short(s, s->bi_buf);
                   1191:         s->bi_buf = 0;
                   1192:         s->bi_valid = 0;
                   1193:     } else if (s->bi_valid >= 8) {
                   1194:         put_byte(s, (Byte)s->bi_buf);
                   1195:         s->bi_buf >>= 8;
                   1196:         s->bi_valid -= 8;
                   1197:     }
                   1198: }
                   1199: 
                   1200: /* ===========================================================================
                   1201:  * Flush the bit buffer and align the output on a byte boundary
                   1202:  */
                   1203: local void bi_windup(s)
                   1204:     deflate_state *s;
                   1205: {
                   1206:     if (s->bi_valid > 8) {
                   1207:         put_short(s, s->bi_buf);
                   1208:     } else if (s->bi_valid > 0) {
                   1209:         put_byte(s, (Byte)s->bi_buf);
                   1210:     }
                   1211:     s->bi_buf = 0;
                   1212:     s->bi_valid = 0;
                   1213: #ifdef DEBUG
                   1214:     s->bits_sent = (s->bits_sent+7) & ~7;
                   1215: #endif
                   1216: }
                   1217: 
                   1218: /* ===========================================================================
                   1219:  * Copy a stored block, storing first the length and its
                   1220:  * one's complement if requested.
                   1221:  */
                   1222: local void copy_block(s, buf, len, header)
                   1223:     deflate_state *s;
                   1224:     charf    *buf;    /* the input data */
                   1225:     unsigned len;     /* its length */
                   1226:     int      header;  /* true if block header must be written */
                   1227: {
                   1228:     bi_windup(s);        /* align on byte boundary */
                   1229:     s->last_eob_len = 8; /* enough lookahead for inflate */
                   1230: 
                   1231:     if (header) {
                   1232:         put_short(s, (ush)len);
                   1233:         put_short(s, (ush)~len);
                   1234: #ifdef DEBUG
                   1235:         s->bits_sent += 2*16;
                   1236: #endif
                   1237:     }
                   1238: #ifdef DEBUG
                   1239:     s->bits_sent += (ulg)len<<3;
                   1240: #endif
                   1241:     while (len--) {
                   1242:         put_byte(s, *buf++);
                   1243:     }
                   1244: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>