File:  [ELWIX - Embedded LightWeight unIX -] / embedaddon / sudo / zlib / trees.c
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Feb 21 16:23:02 2012 UTC (12 years, 4 months ago) by misho
Branches: sudo, MAIN
CVS tags: v1_8_3p2, HEAD
sudo

    1: /* trees.c -- output deflated data using Huffman coding
    2:  * Copyright (C) 1995-2010 Jean-loup Gailly
    3:  * detect_data_type() function provided freely by Cosmin Truta, 2006
    4:  * For conditions of distribution and use, see copyright notice in zlib.h
    5:  */
    6: 
    7: /*
    8:  *  ALGORITHM
    9:  *
   10:  *      The "deflation" process uses several Huffman trees. The more
   11:  *      common source values are represented by shorter bit sequences.
   12:  *
   13:  *      Each code tree is stored in a compressed form which is itself
   14:  * a Huffman encoding of the lengths of all the code strings (in
   15:  * ascending order by source values).  The actual code strings are
   16:  * reconstructed from the lengths in the inflate process, as described
   17:  * in the deflate specification.
   18:  *
   19:  *  REFERENCES
   20:  *
   21:  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
   22:  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
   23:  *
   24:  *      Storer, James A.
   25:  *          Data Compression:  Methods and Theory, pp. 49-50.
   26:  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
   27:  *
   28:  *      Sedgewick, R.
   29:  *          Algorithms, p290.
   30:  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
   31:  */
   32: 
   33: /* @(#) $Id: trees.c,v 1.1.1.1 2012/02/21 16:23:02 misho Exp $ */
   34: 
   35: /* #define GEN_TREES_H */
   36: 
   37: #include "deflate.h"
   38: 
   39: #ifdef DEBUG
   40: #  include <ctype.h>
   41: #endif
   42: 
   43: /* ===========================================================================
   44:  * Constants
   45:  */
   46: 
   47: #define MAX_BL_BITS 7
   48: /* Bit length codes must not exceed MAX_BL_BITS bits */
   49: 
   50: #define END_BLOCK 256
   51: /* end of block literal code */
   52: 
   53: #define REP_3_6      16
   54: /* repeat previous bit length 3-6 times (2 bits of repeat count) */
   55: 
   56: #define REPZ_3_10    17
   57: /* repeat a zero length 3-10 times  (3 bits of repeat count) */
   58: 
   59: #define REPZ_11_138  18
   60: /* repeat a zero length 11-138 times  (7 bits of repeat count) */
   61: 
   62: local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
   63:    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
   64: 
   65: local const int extra_dbits[D_CODES] /* extra bits for each distance code */
   66:    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
   67: 
   68: local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
   69:    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
   70: 
   71: local const uch bl_order[BL_CODES]
   72:    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
   73: /* The lengths of the bit length codes are sent in order of decreasing
   74:  * probability, to avoid transmitting the lengths for unused bit length codes.
   75:  */
   76: 
   77: #define Buf_size (8 * 2*sizeof(char))
   78: /* Number of bits used within bi_buf. (bi_buf might be implemented on
   79:  * more than 16 bits on some systems.)
   80:  */
   81: 
   82: /* ===========================================================================
   83:  * Local data. These are initialized only once.
   84:  */
   85: 
   86: #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
   87: 
   88: #if defined(GEN_TREES_H) || !defined(STDC)
   89: /* non ANSI compilers may not accept trees.h */
   90: 
   91: local ct_data static_ltree[L_CODES+2];
   92: /* The static literal tree. Since the bit lengths are imposed, there is no
   93:  * need for the L_CODES extra codes used during heap construction. However
   94:  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
   95:  * below).
   96:  */
   97: 
   98: local ct_data static_dtree[D_CODES];
   99: /* The static distance tree. (Actually a trivial tree since all codes use
  100:  * 5 bits.)
  101:  */
  102: 
  103: uch _dist_code[DIST_CODE_LEN];
  104: /* Distance codes. The first 256 values correspond to the distances
  105:  * 3 .. 258, the last 256 values correspond to the top 8 bits of
  106:  * the 15 bit distances.
  107:  */
  108: 
  109: uch _length_code[MAX_MATCH-MIN_MATCH+1];
  110: /* length code for each normalized match length (0 == MIN_MATCH) */
  111: 
  112: local int base_length[LENGTH_CODES];
  113: /* First normalized length for each code (0 = MIN_MATCH) */
  114: 
  115: local int base_dist[D_CODES];
  116: /* First normalized distance for each code (0 = distance of 1) */
  117: 
  118: #else
  119: #  include "trees.h"
  120: #endif /* GEN_TREES_H */
  121: 
  122: struct static_tree_desc_s {
  123:     const ct_data *static_tree;  /* static tree or NULL */
  124:     const intf *extra_bits;      /* extra bits for each code or NULL */
  125:     int     extra_base;          /* base index for extra_bits */
  126:     int     elems;               /* max number of elements in the tree */
  127:     int     max_length;          /* max bit length for the codes */
  128: };
  129: 
  130: local static_tree_desc  static_l_desc =
  131: {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
  132: 
  133: local static_tree_desc  static_d_desc =
  134: {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
  135: 
  136: local static_tree_desc  static_bl_desc =
  137: {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
  138: 
  139: /* ===========================================================================
  140:  * Local (static) routines in this file.
  141:  */
  142: 
  143: local void tr_static_init OF((void));
  144: local void init_block     OF((deflate_state *s));
  145: local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
  146: local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
  147: local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
  148: local void build_tree     OF((deflate_state *s, tree_desc *desc));
  149: local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
  150: local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
  151: local int  build_bl_tree  OF((deflate_state *s));
  152: local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
  153:                               int blcodes));
  154: local void compress_block OF((deflate_state *s, ct_data *ltree,
  155:                               ct_data *dtree));
  156: local int  detect_data_type OF((deflate_state *s));
  157: local unsigned bi_reverse OF((unsigned value, int length));
  158: local void bi_windup      OF((deflate_state *s));
  159: local void bi_flush       OF((deflate_state *s));
  160: local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
  161:                               int header));
  162: 
  163: #ifdef GEN_TREES_H
  164: local void gen_trees_header OF((void));
  165: #endif
  166: 
  167: #ifndef DEBUG
  168: #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
  169:    /* Send a code of the given tree. c and tree must not have side effects */
  170: 
  171: #else /* DEBUG */
  172: #  define send_code(s, c, tree) \
  173:      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
  174:        send_bits(s, tree[c].Code, tree[c].Len); }
  175: #endif
  176: 
  177: /* ===========================================================================
  178:  * Output a short LSB first on the stream.
  179:  * IN assertion: there is enough room in pendingBuf.
  180:  */
  181: #define put_short(s, w) { \
  182:     put_byte(s, (uch)((w) & 0xff)); \
  183:     put_byte(s, (uch)((ush)(w) >> 8)); \
  184: }
  185: 
  186: /* ===========================================================================
  187:  * Send a value on a given number of bits.
  188:  * IN assertion: length <= 16 and value fits in length bits.
  189:  */
  190: #ifdef DEBUG
  191: local void send_bits      OF((deflate_state *s, int value, int length));
  192: 
  193: local void send_bits(s, value, length)
  194:     deflate_state *s;
  195:     int value;  /* value to send */
  196:     int length; /* number of bits */
  197: {
  198:     Tracevv((stderr," l %2d v %4x ", length, value));
  199:     Assert(length > 0 && length <= 15, "invalid length");
  200:     s->bits_sent += (ulg)length;
  201: 
  202:     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
  203:      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
  204:      * unused bits in value.
  205:      */
  206:     if (s->bi_valid > (int)Buf_size - length) {
  207:         s->bi_buf |= (ush)value << s->bi_valid;
  208:         put_short(s, s->bi_buf);
  209:         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
  210:         s->bi_valid += length - Buf_size;
  211:     } else {
  212:         s->bi_buf |= (ush)value << s->bi_valid;
  213:         s->bi_valid += length;
  214:     }
  215: }
  216: #else /* !DEBUG */
  217: 
  218: #define send_bits(s, value, length) \
  219: { int len = length;\
  220:   if (s->bi_valid > (int)Buf_size - len) {\
  221:     int val = value;\
  222:     s->bi_buf |= (ush)val << s->bi_valid;\
  223:     put_short(s, s->bi_buf);\
  224:     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
  225:     s->bi_valid += len - Buf_size;\
  226:   } else {\
  227:     s->bi_buf |= (ush)(value) << s->bi_valid;\
  228:     s->bi_valid += len;\
  229:   }\
  230: }
  231: #endif /* DEBUG */
  232: 
  233: 
  234: /* the arguments must not have side effects */
  235: 
  236: /* ===========================================================================
  237:  * Initialize the various 'constant' tables.
  238:  */
  239: local void tr_static_init()
  240: {
  241: #if defined(GEN_TREES_H) || !defined(STDC)
  242:     static int static_init_done = 0;
  243:     int n;        /* iterates over tree elements */
  244:     int bits;     /* bit counter */
  245:     int length;   /* length value */
  246:     int code;     /* code value */
  247:     int dist;     /* distance index */
  248:     ush bl_count[MAX_BITS+1];
  249:     /* number of codes at each bit length for an optimal tree */
  250: 
  251:     if (static_init_done) return;
  252: 
  253:     /* For some embedded targets, global variables are not initialized: */
  254: #ifdef NO_INIT_GLOBAL_POINTERS
  255:     static_l_desc.static_tree = static_ltree;
  256:     static_l_desc.extra_bits = extra_lbits;
  257:     static_d_desc.static_tree = static_dtree;
  258:     static_d_desc.extra_bits = extra_dbits;
  259:     static_bl_desc.extra_bits = extra_blbits;
  260: #endif
  261: 
  262:     /* Initialize the mapping length (0..255) -> length code (0..28) */
  263:     length = 0;
  264:     for (code = 0; code < LENGTH_CODES-1; code++) {
  265:         base_length[code] = length;
  266:         for (n = 0; n < (1<<extra_lbits[code]); n++) {
  267:             _length_code[length++] = (uch)code;
  268:         }
  269:     }
  270:     Assert (length == 256, "tr_static_init: length != 256");
  271:     /* Note that the length 255 (match length 258) can be represented
  272:      * in two different ways: code 284 + 5 bits or code 285, so we
  273:      * overwrite length_code[255] to use the best encoding:
  274:      */
  275:     _length_code[length-1] = (uch)code;
  276: 
  277:     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
  278:     dist = 0;
  279:     for (code = 0 ; code < 16; code++) {
  280:         base_dist[code] = dist;
  281:         for (n = 0; n < (1<<extra_dbits[code]); n++) {
  282:             _dist_code[dist++] = (uch)code;
  283:         }
  284:     }
  285:     Assert (dist == 256, "tr_static_init: dist != 256");
  286:     dist >>= 7; /* from now on, all distances are divided by 128 */
  287:     for ( ; code < D_CODES; code++) {
  288:         base_dist[code] = dist << 7;
  289:         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
  290:             _dist_code[256 + dist++] = (uch)code;
  291:         }
  292:     }
  293:     Assert (dist == 256, "tr_static_init: 256+dist != 512");
  294: 
  295:     /* Construct the codes of the static literal tree */
  296:     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
  297:     n = 0;
  298:     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
  299:     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
  300:     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
  301:     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
  302:     /* Codes 286 and 287 do not exist, but we must include them in the
  303:      * tree construction to get a canonical Huffman tree (longest code
  304:      * all ones)
  305:      */
  306:     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
  307: 
  308:     /* The static distance tree is trivial: */
  309:     for (n = 0; n < D_CODES; n++) {
  310:         static_dtree[n].Len = 5;
  311:         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
  312:     }
  313:     static_init_done = 1;
  314: 
  315: #  ifdef GEN_TREES_H
  316:     gen_trees_header();
  317: #  endif
  318: #endif /* defined(GEN_TREES_H) || !defined(STDC) */
  319: }
  320: 
  321: /* ===========================================================================
  322:  * Genererate the file trees.h describing the static trees.
  323:  */
  324: #ifdef GEN_TREES_H
  325: #  ifndef DEBUG
  326: #    include <stdio.h>
  327: #  endif
  328: 
  329: #  define SEPARATOR(i, last, width) \
  330:       ((i) == (last)? "\n};\n\n" :    \
  331:        ((i) % (width) == (width)-1 ? ",\n" : ", "))
  332: 
  333: void gen_trees_header()
  334: {
  335:     FILE *header = fopen("trees.h", "w");
  336:     int i;
  337: 
  338:     Assert (header != NULL, "Can't open trees.h");
  339:     fprintf(header,
  340:             "/* header created automatically with -DGEN_TREES_H */\n\n");
  341: 
  342:     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
  343:     for (i = 0; i < L_CODES+2; i++) {
  344:         fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
  345:                 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
  346:     }
  347: 
  348:     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
  349:     for (i = 0; i < D_CODES; i++) {
  350:         fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
  351:                 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
  352:     }
  353: 
  354:     fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
  355:     for (i = 0; i < DIST_CODE_LEN; i++) {
  356:         fprintf(header, "%2u%s", _dist_code[i],
  357:                 SEPARATOR(i, DIST_CODE_LEN-1, 20));
  358:     }
  359: 
  360:     fprintf(header,
  361:         "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
  362:     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
  363:         fprintf(header, "%2u%s", _length_code[i],
  364:                 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
  365:     }
  366: 
  367:     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
  368:     for (i = 0; i < LENGTH_CODES; i++) {
  369:         fprintf(header, "%1u%s", base_length[i],
  370:                 SEPARATOR(i, LENGTH_CODES-1, 20));
  371:     }
  372: 
  373:     fprintf(header, "local const int base_dist[D_CODES] = {\n");
  374:     for (i = 0; i < D_CODES; i++) {
  375:         fprintf(header, "%5u%s", base_dist[i],
  376:                 SEPARATOR(i, D_CODES-1, 10));
  377:     }
  378: 
  379:     fclose(header);
  380: }
  381: #endif /* GEN_TREES_H */
  382: 
  383: /* ===========================================================================
  384:  * Initialize the tree data structures for a new zlib stream.
  385:  */
  386: void ZLIB_INTERNAL _tr_init(s)
  387:     deflate_state *s;
  388: {
  389:     tr_static_init();
  390: 
  391:     s->l_desc.dyn_tree = s->dyn_ltree;
  392:     s->l_desc.stat_desc = &static_l_desc;
  393: 
  394:     s->d_desc.dyn_tree = s->dyn_dtree;
  395:     s->d_desc.stat_desc = &static_d_desc;
  396: 
  397:     s->bl_desc.dyn_tree = s->bl_tree;
  398:     s->bl_desc.stat_desc = &static_bl_desc;
  399: 
  400:     s->bi_buf = 0;
  401:     s->bi_valid = 0;
  402:     s->last_eob_len = 8; /* enough lookahead for inflate */
  403: #ifdef DEBUG
  404:     s->compressed_len = 0L;
  405:     s->bits_sent = 0L;
  406: #endif
  407: 
  408:     /* Initialize the first block of the first file: */
  409:     init_block(s);
  410: }
  411: 
  412: /* ===========================================================================
  413:  * Initialize a new block.
  414:  */
  415: local void init_block(s)
  416:     deflate_state *s;
  417: {
  418:     int n; /* iterates over tree elements */
  419: 
  420:     /* Initialize the trees. */
  421:     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
  422:     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
  423:     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
  424: 
  425:     s->dyn_ltree[END_BLOCK].Freq = 1;
  426:     s->opt_len = s->static_len = 0L;
  427:     s->last_lit = s->matches = 0;
  428: }
  429: 
  430: #define SMALLEST 1
  431: /* Index within the heap array of least frequent node in the Huffman tree */
  432: 
  433: 
  434: /* ===========================================================================
  435:  * Remove the smallest element from the heap and recreate the heap with
  436:  * one less element. Updates heap and heap_len.
  437:  */
  438: #define pqremove(s, tree, top) \
  439: {\
  440:     top = s->heap[SMALLEST]; \
  441:     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
  442:     pqdownheap(s, tree, SMALLEST); \
  443: }
  444: 
  445: /* ===========================================================================
  446:  * Compares to subtrees, using the tree depth as tie breaker when
  447:  * the subtrees have equal frequency. This minimizes the worst case length.
  448:  */
  449: #define smaller(tree, n, m, depth) \
  450:    (tree[n].Freq < tree[m].Freq || \
  451:    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
  452: 
  453: /* ===========================================================================
  454:  * Restore the heap property by moving down the tree starting at node k,
  455:  * exchanging a node with the smallest of its two sons if necessary, stopping
  456:  * when the heap property is re-established (each father smaller than its
  457:  * two sons).
  458:  */
  459: local void pqdownheap(s, tree, k)
  460:     deflate_state *s;
  461:     ct_data *tree;  /* the tree to restore */
  462:     int k;               /* node to move down */
  463: {
  464:     int v = s->heap[k];
  465:     int j = k << 1;  /* left son of k */
  466:     while (j <= s->heap_len) {
  467:         /* Set j to the smallest of the two sons: */
  468:         if (j < s->heap_len &&
  469:             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
  470:             j++;
  471:         }
  472:         /* Exit if v is smaller than both sons */
  473:         if (smaller(tree, v, s->heap[j], s->depth)) break;
  474: 
  475:         /* Exchange v with the smallest son */
  476:         s->heap[k] = s->heap[j];  k = j;
  477: 
  478:         /* And continue down the tree, setting j to the left son of k */
  479:         j <<= 1;
  480:     }
  481:     s->heap[k] = v;
  482: }
  483: 
  484: /* ===========================================================================
  485:  * Compute the optimal bit lengths for a tree and update the total bit length
  486:  * for the current block.
  487:  * IN assertion: the fields freq and dad are set, heap[heap_max] and
  488:  *    above are the tree nodes sorted by increasing frequency.
  489:  * OUT assertions: the field len is set to the optimal bit length, the
  490:  *     array bl_count contains the frequencies for each bit length.
  491:  *     The length opt_len is updated; static_len is also updated if stree is
  492:  *     not null.
  493:  */
  494: local void gen_bitlen(s, desc)
  495:     deflate_state *s;
  496:     tree_desc *desc;    /* the tree descriptor */
  497: {
  498:     ct_data *tree        = desc->dyn_tree;
  499:     int max_code         = desc->max_code;
  500:     const ct_data *stree = desc->stat_desc->static_tree;
  501:     const intf *extra    = desc->stat_desc->extra_bits;
  502:     int base             = desc->stat_desc->extra_base;
  503:     int max_length       = desc->stat_desc->max_length;
  504:     int h;              /* heap index */
  505:     int n, m;           /* iterate over the tree elements */
  506:     int bits;           /* bit length */
  507:     int xbits;          /* extra bits */
  508:     ush f;              /* frequency */
  509:     int overflow = 0;   /* number of elements with bit length too large */
  510: 
  511:     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
  512: 
  513:     /* In a first pass, compute the optimal bit lengths (which may
  514:      * overflow in the case of the bit length tree).
  515:      */
  516:     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
  517: 
  518:     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
  519:         n = s->heap[h];
  520:         bits = tree[tree[n].Dad].Len + 1;
  521:         if (bits > max_length) bits = max_length, overflow++;
  522:         tree[n].Len = (ush)bits;
  523:         /* We overwrite tree[n].Dad which is no longer needed */
  524: 
  525:         if (n > max_code) continue; /* not a leaf node */
  526: 
  527:         s->bl_count[bits]++;
  528:         xbits = 0;
  529:         if (n >= base) xbits = extra[n-base];
  530:         f = tree[n].Freq;
  531:         s->opt_len += (ulg)f * (bits + xbits);
  532:         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
  533:     }
  534:     if (overflow == 0) return;
  535: 
  536:     Trace((stderr,"\nbit length overflow\n"));
  537:     /* This happens for example on obj2 and pic of the Calgary corpus */
  538: 
  539:     /* Find the first bit length which could increase: */
  540:     do {
  541:         bits = max_length-1;
  542:         while (s->bl_count[bits] == 0) bits--;
  543:         s->bl_count[bits]--;      /* move one leaf down the tree */
  544:         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
  545:         s->bl_count[max_length]--;
  546:         /* The brother of the overflow item also moves one step up,
  547:          * but this does not affect bl_count[max_length]
  548:          */
  549:         overflow -= 2;
  550:     } while (overflow > 0);
  551: 
  552:     /* Now recompute all bit lengths, scanning in increasing frequency.
  553:      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
  554:      * lengths instead of fixing only the wrong ones. This idea is taken
  555:      * from 'ar' written by Haruhiko Okumura.)
  556:      */
  557:     for (bits = max_length; bits != 0; bits--) {
  558:         n = s->bl_count[bits];
  559:         while (n != 0) {
  560:             m = s->heap[--h];
  561:             if (m > max_code) continue;
  562:             if ((unsigned) tree[m].Len != (unsigned) bits) {
  563:                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
  564:                 s->opt_len += ((long)bits - (long)tree[m].Len)
  565:                               *(long)tree[m].Freq;
  566:                 tree[m].Len = (ush)bits;
  567:             }
  568:             n--;
  569:         }
  570:     }
  571: }
  572: 
  573: /* ===========================================================================
  574:  * Generate the codes for a given tree and bit counts (which need not be
  575:  * optimal).
  576:  * IN assertion: the array bl_count contains the bit length statistics for
  577:  * the given tree and the field len is set for all tree elements.
  578:  * OUT assertion: the field code is set for all tree elements of non
  579:  *     zero code length.
  580:  */
  581: local void gen_codes (tree, max_code, bl_count)
  582:     ct_data *tree;             /* the tree to decorate */
  583:     int max_code;              /* largest code with non zero frequency */
  584:     ushf *bl_count;            /* number of codes at each bit length */
  585: {
  586:     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
  587:     ush code = 0;              /* running code value */
  588:     int bits;                  /* bit index */
  589:     int n;                     /* code index */
  590: 
  591:     /* The distribution counts are first used to generate the code values
  592:      * without bit reversal.
  593:      */
  594:     for (bits = 1; bits <= MAX_BITS; bits++) {
  595:         next_code[bits] = code = (code + bl_count[bits-1]) << 1;
  596:     }
  597:     /* Check that the bit counts in bl_count are consistent. The last code
  598:      * must be all ones.
  599:      */
  600:     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
  601:             "inconsistent bit counts");
  602:     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
  603: 
  604:     for (n = 0;  n <= max_code; n++) {
  605:         int len = tree[n].Len;
  606:         if (len == 0) continue;
  607:         /* Now reverse the bits */
  608:         tree[n].Code = bi_reverse(next_code[len]++, len);
  609: 
  610:         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
  611:              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
  612:     }
  613: }
  614: 
  615: /* ===========================================================================
  616:  * Construct one Huffman tree and assigns the code bit strings and lengths.
  617:  * Update the total bit length for the current block.
  618:  * IN assertion: the field freq is set for all tree elements.
  619:  * OUT assertions: the fields len and code are set to the optimal bit length
  620:  *     and corresponding code. The length opt_len is updated; static_len is
  621:  *     also updated if stree is not null. The field max_code is set.
  622:  */
  623: local void build_tree(s, desc)
  624:     deflate_state *s;
  625:     tree_desc *desc; /* the tree descriptor */
  626: {
  627:     ct_data *tree         = desc->dyn_tree;
  628:     const ct_data *stree  = desc->stat_desc->static_tree;
  629:     int elems             = desc->stat_desc->elems;
  630:     int n, m;          /* iterate over heap elements */
  631:     int max_code = -1; /* largest code with non zero frequency */
  632:     int node;          /* new node being created */
  633: 
  634:     /* Construct the initial heap, with least frequent element in
  635:      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
  636:      * heap[0] is not used.
  637:      */
  638:     s->heap_len = 0, s->heap_max = HEAP_SIZE;
  639: 
  640:     for (n = 0; n < elems; n++) {
  641:         if (tree[n].Freq != 0) {
  642:             s->heap[++(s->heap_len)] = max_code = n;
  643:             s->depth[n] = 0;
  644:         } else {
  645:             tree[n].Len = 0;
  646:         }
  647:     }
  648: 
  649:     /* The pkzip format requires that at least one distance code exists,
  650:      * and that at least one bit should be sent even if there is only one
  651:      * possible code. So to avoid special checks later on we force at least
  652:      * two codes of non zero frequency.
  653:      */
  654:     while (s->heap_len < 2) {
  655:         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
  656:         tree[node].Freq = 1;
  657:         s->depth[node] = 0;
  658:         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
  659:         /* node is 0 or 1 so it does not have extra bits */
  660:     }
  661:     desc->max_code = max_code;
  662: 
  663:     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
  664:      * establish sub-heaps of increasing lengths:
  665:      */
  666:     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
  667: 
  668:     /* Construct the Huffman tree by repeatedly combining the least two
  669:      * frequent nodes.
  670:      */
  671:     node = elems;              /* next internal node of the tree */
  672:     do {
  673:         pqremove(s, tree, n);  /* n = node of least frequency */
  674:         m = s->heap[SMALLEST]; /* m = node of next least frequency */
  675: 
  676:         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
  677:         s->heap[--(s->heap_max)] = m;
  678: 
  679:         /* Create a new node father of n and m */
  680:         tree[node].Freq = tree[n].Freq + tree[m].Freq;
  681:         s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
  682:                                 s->depth[n] : s->depth[m]) + 1);
  683:         tree[n].Dad = tree[m].Dad = (ush)node;
  684: #ifdef DUMP_BL_TREE
  685:         if (tree == s->bl_tree) {
  686:             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
  687:                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
  688:         }
  689: #endif
  690:         /* and insert the new node in the heap */
  691:         s->heap[SMALLEST] = node++;
  692:         pqdownheap(s, tree, SMALLEST);
  693: 
  694:     } while (s->heap_len >= 2);
  695: 
  696:     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
  697: 
  698:     /* At this point, the fields freq and dad are set. We can now
  699:      * generate the bit lengths.
  700:      */
  701:     gen_bitlen(s, (tree_desc *)desc);
  702: 
  703:     /* The field len is now set, we can generate the bit codes */
  704:     gen_codes ((ct_data *)tree, max_code, s->bl_count);
  705: }
  706: 
  707: /* ===========================================================================
  708:  * Scan a literal or distance tree to determine the frequencies of the codes
  709:  * in the bit length tree.
  710:  */
  711: local void scan_tree (s, tree, max_code)
  712:     deflate_state *s;
  713:     ct_data *tree;   /* the tree to be scanned */
  714:     int max_code;    /* and its largest code of non zero frequency */
  715: {
  716:     int n;                     /* iterates over all tree elements */
  717:     int prevlen = -1;          /* last emitted length */
  718:     int curlen;                /* length of current code */
  719:     int nextlen = tree[0].Len; /* length of next code */
  720:     int count = 0;             /* repeat count of the current code */
  721:     int max_count = 7;         /* max repeat count */
  722:     int min_count = 4;         /* min repeat count */
  723: 
  724:     if (nextlen == 0) max_count = 138, min_count = 3;
  725:     tree[max_code+1].Len = (ush)0xffff; /* guard */
  726: 
  727:     for (n = 0; n <= max_code; n++) {
  728:         curlen = nextlen; nextlen = tree[n+1].Len;
  729:         if (++count < max_count && curlen == nextlen) {
  730:             continue;
  731:         } else if (count < min_count) {
  732:             s->bl_tree[curlen].Freq += count;
  733:         } else if (curlen != 0) {
  734:             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
  735:             s->bl_tree[REP_3_6].Freq++;
  736:         } else if (count <= 10) {
  737:             s->bl_tree[REPZ_3_10].Freq++;
  738:         } else {
  739:             s->bl_tree[REPZ_11_138].Freq++;
  740:         }
  741:         count = 0; prevlen = curlen;
  742:         if (nextlen == 0) {
  743:             max_count = 138, min_count = 3;
  744:         } else if (curlen == nextlen) {
  745:             max_count = 6, min_count = 3;
  746:         } else {
  747:             max_count = 7, min_count = 4;
  748:         }
  749:     }
  750: }
  751: 
  752: /* ===========================================================================
  753:  * Send a literal or distance tree in compressed form, using the codes in
  754:  * bl_tree.
  755:  */
  756: local void send_tree (s, tree, max_code)
  757:     deflate_state *s;
  758:     ct_data *tree; /* the tree to be scanned */
  759:     int max_code;       /* and its largest code of non zero frequency */
  760: {
  761:     int n;                     /* iterates over all tree elements */
  762:     int prevlen = -1;          /* last emitted length */
  763:     int curlen;                /* length of current code */
  764:     int nextlen = tree[0].Len; /* length of next code */
  765:     int count = 0;             /* repeat count of the current code */
  766:     int max_count = 7;         /* max repeat count */
  767:     int min_count = 4;         /* min repeat count */
  768: 
  769:     /* tree[max_code+1].Len = -1; */  /* guard already set */
  770:     if (nextlen == 0) max_count = 138, min_count = 3;
  771: 
  772:     for (n = 0; n <= max_code; n++) {
  773:         curlen = nextlen; nextlen = tree[n+1].Len;
  774:         if (++count < max_count && curlen == nextlen) {
  775:             continue;
  776:         } else if (count < min_count) {
  777:             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
  778: 
  779:         } else if (curlen != 0) {
  780:             if (curlen != prevlen) {
  781:                 send_code(s, curlen, s->bl_tree); count--;
  782:             }
  783:             Assert(count >= 3 && count <= 6, " 3_6?");
  784:             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
  785: 
  786:         } else if (count <= 10) {
  787:             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
  788: 
  789:         } else {
  790:             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
  791:         }
  792:         count = 0; prevlen = curlen;
  793:         if (nextlen == 0) {
  794:             max_count = 138, min_count = 3;
  795:         } else if (curlen == nextlen) {
  796:             max_count = 6, min_count = 3;
  797:         } else {
  798:             max_count = 7, min_count = 4;
  799:         }
  800:     }
  801: }
  802: 
  803: /* ===========================================================================
  804:  * Construct the Huffman tree for the bit lengths and return the index in
  805:  * bl_order of the last bit length code to send.
  806:  */
  807: local int build_bl_tree(s)
  808:     deflate_state *s;
  809: {
  810:     int max_blindex;  /* index of last bit length code of non zero freq */
  811: 
  812:     /* Determine the bit length frequencies for literal and distance trees */
  813:     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
  814:     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
  815: 
  816:     /* Build the bit length tree: */
  817:     build_tree(s, (tree_desc *)(&(s->bl_desc)));
  818:     /* opt_len now includes the length of the tree representations, except
  819:      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
  820:      */
  821: 
  822:     /* Determine the number of bit length codes to send. The pkzip format
  823:      * requires that at least 4 bit length codes be sent. (appnote.txt says
  824:      * 3 but the actual value used is 4.)
  825:      */
  826:     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
  827:         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
  828:     }
  829:     /* Update opt_len to include the bit length tree and counts */
  830:     s->opt_len += 3*(max_blindex+1) + 5+5+4;
  831:     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
  832:             s->opt_len, s->static_len));
  833: 
  834:     return max_blindex;
  835: }
  836: 
  837: /* ===========================================================================
  838:  * Send the header for a block using dynamic Huffman trees: the counts, the
  839:  * lengths of the bit length codes, the literal tree and the distance tree.
  840:  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
  841:  */
  842: local void send_all_trees(s, lcodes, dcodes, blcodes)
  843:     deflate_state *s;
  844:     int lcodes, dcodes, blcodes; /* number of codes for each tree */
  845: {
  846:     int rank;                    /* index in bl_order */
  847: 
  848:     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
  849:     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
  850:             "too many codes");
  851:     Tracev((stderr, "\nbl counts: "));
  852:     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
  853:     send_bits(s, dcodes-1,   5);
  854:     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
  855:     for (rank = 0; rank < blcodes; rank++) {
  856:         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
  857:         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
  858:     }
  859:     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
  860: 
  861:     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
  862:     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
  863: 
  864:     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
  865:     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
  866: }
  867: 
  868: /* ===========================================================================
  869:  * Send a stored block
  870:  */
  871: void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
  872:     deflate_state *s;
  873:     charf *buf;       /* input block */
  874:     ulg stored_len;   /* length of input block */
  875:     int last;         /* one if this is the last block for a file */
  876: {
  877:     send_bits(s, (STORED_BLOCK<<1)+last, 3);    /* send block type */
  878: #ifdef DEBUG
  879:     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
  880:     s->compressed_len += (stored_len + 4) << 3;
  881: #endif
  882:     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
  883: }
  884: 
  885: /* ===========================================================================
  886:  * Send one empty static block to give enough lookahead for inflate.
  887:  * This takes 10 bits, of which 7 may remain in the bit buffer.
  888:  * The current inflate code requires 9 bits of lookahead. If the
  889:  * last two codes for the previous block (real code plus EOB) were coded
  890:  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
  891:  * the last real code. In this case we send two empty static blocks instead
  892:  * of one. (There are no problems if the previous block is stored or fixed.)
  893:  * To simplify the code, we assume the worst case of last real code encoded
  894:  * on one bit only.
  895:  */
  896: void ZLIB_INTERNAL _tr_align(s)
  897:     deflate_state *s;
  898: {
  899:     send_bits(s, STATIC_TREES<<1, 3);
  900:     send_code(s, END_BLOCK, static_ltree);
  901: #ifdef DEBUG
  902:     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
  903: #endif
  904:     bi_flush(s);
  905:     /* Of the 10 bits for the empty block, we have already sent
  906:      * (10 - bi_valid) bits. The lookahead for the last real code (before
  907:      * the EOB of the previous block) was thus at least one plus the length
  908:      * of the EOB plus what we have just sent of the empty static block.
  909:      */
  910:     if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
  911:         send_bits(s, STATIC_TREES<<1, 3);
  912:         send_code(s, END_BLOCK, static_ltree);
  913: #ifdef DEBUG
  914:         s->compressed_len += 10L;
  915: #endif
  916:         bi_flush(s);
  917:     }
  918:     s->last_eob_len = 7;
  919: }
  920: 
  921: /* ===========================================================================
  922:  * Determine the best encoding for the current block: dynamic trees, static
  923:  * trees or store, and output the encoded block to the zip file.
  924:  */
  925: void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
  926:     deflate_state *s;
  927:     charf *buf;       /* input block, or NULL if too old */
  928:     ulg stored_len;   /* length of input block */
  929:     int last;         /* one if this is the last block for a file */
  930: {
  931:     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
  932:     int max_blindex = 0;  /* index of last bit length code of non zero freq */
  933: 
  934:     /* Build the Huffman trees unless a stored block is forced */
  935:     if (s->level > 0) {
  936: 
  937:         /* Check if the file is binary or text */
  938:         if (s->strm->data_type == Z_UNKNOWN)
  939:             s->strm->data_type = detect_data_type(s);
  940: 
  941:         /* Construct the literal and distance trees */
  942:         build_tree(s, (tree_desc *)(&(s->l_desc)));
  943:         Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
  944:                 s->static_len));
  945: 
  946:         build_tree(s, (tree_desc *)(&(s->d_desc)));
  947:         Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
  948:                 s->static_len));
  949:         /* At this point, opt_len and static_len are the total bit lengths of
  950:          * the compressed block data, excluding the tree representations.
  951:          */
  952: 
  953:         /* Build the bit length tree for the above two trees, and get the index
  954:          * in bl_order of the last bit length code to send.
  955:          */
  956:         max_blindex = build_bl_tree(s);
  957: 
  958:         /* Determine the best encoding. Compute the block lengths in bytes. */
  959:         opt_lenb = (s->opt_len+3+7)>>3;
  960:         static_lenb = (s->static_len+3+7)>>3;
  961: 
  962:         Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
  963:                 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
  964:                 s->last_lit));
  965: 
  966:         if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
  967: 
  968:     } else {
  969:         Assert(buf != (char*)0, "lost buf");
  970:         opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
  971:     }
  972: 
  973: #ifdef FORCE_STORED
  974:     if (buf != (char*)0) { /* force stored block */
  975: #else
  976:     if (stored_len+4 <= opt_lenb && buf != (char*)0) {
  977:                        /* 4: two words for the lengths */
  978: #endif
  979:         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
  980:          * Otherwise we can't have processed more than WSIZE input bytes since
  981:          * the last block flush, because compression would have been
  982:          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
  983:          * transform a block into a stored block.
  984:          */
  985:         _tr_stored_block(s, buf, stored_len, last);
  986: 
  987: #ifdef FORCE_STATIC
  988:     } else if (static_lenb >= 0) { /* force static trees */
  989: #else
  990:     } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
  991: #endif
  992:         send_bits(s, (STATIC_TREES<<1)+last, 3);
  993:         compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
  994: #ifdef DEBUG
  995:         s->compressed_len += 3 + s->static_len;
  996: #endif
  997:     } else {
  998:         send_bits(s, (DYN_TREES<<1)+last, 3);
  999:         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
 1000:                        max_blindex+1);
 1001:         compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
 1002: #ifdef DEBUG
 1003:         s->compressed_len += 3 + s->opt_len;
 1004: #endif
 1005:     }
 1006:     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
 1007:     /* The above check is made mod 2^32, for files larger than 512 MB
 1008:      * and uLong implemented on 32 bits.
 1009:      */
 1010:     init_block(s);
 1011: 
 1012:     if (last) {
 1013:         bi_windup(s);
 1014: #ifdef DEBUG
 1015:         s->compressed_len += 7;  /* align on byte boundary */
 1016: #endif
 1017:     }
 1018:     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
 1019:            s->compressed_len-7*last));
 1020: }
 1021: 
 1022: /* ===========================================================================
 1023:  * Save the match info and tally the frequency counts. Return true if
 1024:  * the current block must be flushed.
 1025:  */
 1026: int ZLIB_INTERNAL _tr_tally (s, dist, lc)
 1027:     deflate_state *s;
 1028:     unsigned dist;  /* distance of matched string */
 1029:     unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
 1030: {
 1031:     s->d_buf[s->last_lit] = (ush)dist;
 1032:     s->l_buf[s->last_lit++] = (uch)lc;
 1033:     if (dist == 0) {
 1034:         /* lc is the unmatched char */
 1035:         s->dyn_ltree[lc].Freq++;
 1036:     } else {
 1037:         s->matches++;
 1038:         /* Here, lc is the match length - MIN_MATCH */
 1039:         dist--;             /* dist = match distance - 1 */
 1040:         Assert((ush)dist < (ush)MAX_DIST(s) &&
 1041:                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
 1042:                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
 1043: 
 1044:         s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
 1045:         s->dyn_dtree[d_code(dist)].Freq++;
 1046:     }
 1047: 
 1048: #ifdef TRUNCATE_BLOCK
 1049:     /* Try to guess if it is profitable to stop the current block here */
 1050:     if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
 1051:         /* Compute an upper bound for the compressed length */
 1052:         ulg out_length = (ulg)s->last_lit*8L;
 1053:         ulg in_length = (ulg)((long)s->strstart - s->block_start);
 1054:         int dcode;
 1055:         for (dcode = 0; dcode < D_CODES; dcode++) {
 1056:             out_length += (ulg)s->dyn_dtree[dcode].Freq *
 1057:                 (5L+extra_dbits[dcode]);
 1058:         }
 1059:         out_length >>= 3;
 1060:         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
 1061:                s->last_lit, in_length, out_length,
 1062:                100L - out_length*100L/in_length));
 1063:         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
 1064:     }
 1065: #endif
 1066:     return (s->last_lit == s->lit_bufsize-1);
 1067:     /* We avoid equality with lit_bufsize because of wraparound at 64K
 1068:      * on 16 bit machines and because stored blocks are restricted to
 1069:      * 64K-1 bytes.
 1070:      */
 1071: }
 1072: 
 1073: /* ===========================================================================
 1074:  * Send the block data compressed using the given Huffman trees
 1075:  */
 1076: local void compress_block(s, ltree, dtree)
 1077:     deflate_state *s;
 1078:     ct_data *ltree; /* literal tree */
 1079:     ct_data *dtree; /* distance tree */
 1080: {
 1081:     unsigned dist;      /* distance of matched string */
 1082:     int lc;             /* match length or unmatched char (if dist == 0) */
 1083:     unsigned lx = 0;    /* running index in l_buf */
 1084:     unsigned code;      /* the code to send */
 1085:     int extra;          /* number of extra bits to send */
 1086: 
 1087:     if (s->last_lit != 0) do {
 1088:         dist = s->d_buf[lx];
 1089:         lc = s->l_buf[lx++];
 1090:         if (dist == 0) {
 1091:             send_code(s, lc, ltree); /* send a literal byte */
 1092:             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
 1093:         } else {
 1094:             /* Here, lc is the match length - MIN_MATCH */
 1095:             code = _length_code[lc];
 1096:             send_code(s, code+LITERALS+1, ltree); /* send the length code */
 1097:             extra = extra_lbits[code];
 1098:             if (extra != 0) {
 1099:                 lc -= base_length[code];
 1100:                 send_bits(s, lc, extra);       /* send the extra length bits */
 1101:             }
 1102:             dist--; /* dist is now the match distance - 1 */
 1103:             code = d_code(dist);
 1104:             Assert (code < D_CODES, "bad d_code");
 1105: 
 1106:             send_code(s, code, dtree);       /* send the distance code */
 1107:             extra = extra_dbits[code];
 1108:             if (extra != 0) {
 1109:                 dist -= base_dist[code];
 1110:                 send_bits(s, dist, extra);   /* send the extra distance bits */
 1111:             }
 1112:         } /* literal or match pair ? */
 1113: 
 1114:         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
 1115:         Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
 1116:                "pendingBuf overflow");
 1117: 
 1118:     } while (lx < s->last_lit);
 1119: 
 1120:     send_code(s, END_BLOCK, ltree);
 1121:     s->last_eob_len = ltree[END_BLOCK].Len;
 1122: }
 1123: 
 1124: /* ===========================================================================
 1125:  * Check if the data type is TEXT or BINARY, using the following algorithm:
 1126:  * - TEXT if the two conditions below are satisfied:
 1127:  *    a) There are no non-portable control characters belonging to the
 1128:  *       "black list" (0..6, 14..25, 28..31).
 1129:  *    b) There is at least one printable character belonging to the
 1130:  *       "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
 1131:  * - BINARY otherwise.
 1132:  * - The following partially-portable control characters form a
 1133:  *   "gray list" that is ignored in this detection algorithm:
 1134:  *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
 1135:  * IN assertion: the fields Freq of dyn_ltree are set.
 1136:  */
 1137: local int detect_data_type(s)
 1138:     deflate_state *s;
 1139: {
 1140:     /* black_mask is the bit mask of black-listed bytes
 1141:      * set bits 0..6, 14..25, and 28..31
 1142:      * 0xf3ffc07f = binary 11110011111111111100000001111111
 1143:      */
 1144:     unsigned long black_mask = 0xf3ffc07fUL;
 1145:     int n;
 1146: 
 1147:     /* Check for non-textual ("black-listed") bytes. */
 1148:     for (n = 0; n <= 31; n++, black_mask >>= 1)
 1149:         if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0))
 1150:             return Z_BINARY;
 1151: 
 1152:     /* Check for textual ("white-listed") bytes. */
 1153:     if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
 1154:             || s->dyn_ltree[13].Freq != 0)
 1155:         return Z_TEXT;
 1156:     for (n = 32; n < LITERALS; n++)
 1157:         if (s->dyn_ltree[n].Freq != 0)
 1158:             return Z_TEXT;
 1159: 
 1160:     /* There are no "black-listed" or "white-listed" bytes:
 1161:      * this stream either is empty or has tolerated ("gray-listed") bytes only.
 1162:      */
 1163:     return Z_BINARY;
 1164: }
 1165: 
 1166: /* ===========================================================================
 1167:  * Reverse the first len bits of a code, using straightforward code (a faster
 1168:  * method would use a table)
 1169:  * IN assertion: 1 <= len <= 15
 1170:  */
 1171: local unsigned bi_reverse(code, len)
 1172:     unsigned code; /* the value to invert */
 1173:     int len;       /* its bit length */
 1174: {
 1175:     register unsigned res = 0;
 1176:     do {
 1177:         res |= code & 1;
 1178:         code >>= 1, res <<= 1;
 1179:     } while (--len > 0);
 1180:     return res >> 1;
 1181: }
 1182: 
 1183: /* ===========================================================================
 1184:  * Flush the bit buffer, keeping at most 7 bits in it.
 1185:  */
 1186: local void bi_flush(s)
 1187:     deflate_state *s;
 1188: {
 1189:     if (s->bi_valid == 16) {
 1190:         put_short(s, s->bi_buf);
 1191:         s->bi_buf = 0;
 1192:         s->bi_valid = 0;
 1193:     } else if (s->bi_valid >= 8) {
 1194:         put_byte(s, (Byte)s->bi_buf);
 1195:         s->bi_buf >>= 8;
 1196:         s->bi_valid -= 8;
 1197:     }
 1198: }
 1199: 
 1200: /* ===========================================================================
 1201:  * Flush the bit buffer and align the output on a byte boundary
 1202:  */
 1203: local void bi_windup(s)
 1204:     deflate_state *s;
 1205: {
 1206:     if (s->bi_valid > 8) {
 1207:         put_short(s, s->bi_buf);
 1208:     } else if (s->bi_valid > 0) {
 1209:         put_byte(s, (Byte)s->bi_buf);
 1210:     }
 1211:     s->bi_buf = 0;
 1212:     s->bi_valid = 0;
 1213: #ifdef DEBUG
 1214:     s->bits_sent = (s->bits_sent+7) & ~7;
 1215: #endif
 1216: }
 1217: 
 1218: /* ===========================================================================
 1219:  * Copy a stored block, storing first the length and its
 1220:  * one's complement if requested.
 1221:  */
 1222: local void copy_block(s, buf, len, header)
 1223:     deflate_state *s;
 1224:     charf    *buf;    /* the input data */
 1225:     unsigned len;     /* its length */
 1226:     int      header;  /* true if block header must be written */
 1227: {
 1228:     bi_windup(s);        /* align on byte boundary */
 1229:     s->last_eob_len = 8; /* enough lookahead for inflate */
 1230: 
 1231:     if (header) {
 1232:         put_short(s, (ush)len);
 1233:         put_short(s, (ush)~len);
 1234: #ifdef DEBUG
 1235:         s->bits_sent += 2*16;
 1236: #endif
 1237:     }
 1238: #ifdef DEBUG
 1239:     s->bits_sent += (ulg)len<<3;
 1240: #endif
 1241:     while (len--) {
 1242:         put_byte(s, *buf++);
 1243:     }
 1244: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>