/*************************************************************************
* (C) 2011 AITNET ltd - Sofia/Bulgaria - <misho@aitbg.com>
* by Michael Pounov <misho@openbsd-bg.org>
*
* $Author: misho $
* $Id: hooks.c,v 1.34 2019/01/14 15:58:50 misho Exp $
*
**************************************************************************
The ELWIX and AITNET software is distributed under the following
terms:
All of the documentation and software included in the ELWIX and AITNET
Releases is copyrighted by ELWIX - Sofia/Bulgaria <info@elwix.org>
Copyright 2004 - 2018
by Michael Pounov <misho@elwix.org>. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:
This product includes software developed by Michael Pounov <misho@elwix.org>
ELWIX - Embedded LightWeight unIX and its contributors.
4. Neither the name of AITNET nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY AITNET AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.
*/
#include "global.h"
#include "hooks.h"
static inline void
transit_task2ready(sched_task_t * __restrict t, sched_queue_t * __restrict q)
{
remove_task_from(t, q);
t->task_type = taskREADY;
insert_task_to(t, &(TASK_ROOT(t))->root_ready);
}
#ifdef HAVE_LIBPTHREAD
static void *
_sched_threadWrapper(sched_task_t *t)
{
void *ret = NULL;
sched_root_task_t *r;
if (!t || !TASK_ROOT(t))
pthread_exit(ret);
else
r = (sched_root_task_t*) TASK_ROOT(t);
pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, NULL);
/*
pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL);
*/
/* notify parent, thread is ready for execution */
pthread_testcancel();
ret = schedCall(t);
r->root_ret = ret;
if (TASK_VAL(t)) {
transit_task2unuse(t, &r->root_thread);
TASK_VAL(t) = 0;
}
pthread_exit(ret);
}
#endif
#if defined(HAVE_LIBRT) && defined(HAVE_TIMER_CREATE) && \
defined(HAVE_TIMER_SETTIME) && defined(HAVE_TIMER_DELETE)
#if SUP_ENABLE == KQ_SUPPORT
static void *
_sched_rtcWrapper(sched_task_t *t)
{
sched_task_t *task;
void *ret;
if (!t || !TASK_ROOT(t) || !TASK_DATA(t))
return NULL;
else {
task = (sched_task_t*) TASK_DATA(t);
timer_delete((timer_t) TASK_DATLEN(t));
}
ret = schedCall(task);
transit_task2unuse(task, &(TASK_ROOT(task))->root_rtc);
return ret;
}
#else
static void
_sched_rtcSigWrapper(int sig, siginfo_t *si, void *uc)
{
sched_task_t *task;
if (si && si->si_value.sival_ptr) {
task = (sched_task_t*) si->si_value.sival_ptr;
timer_delete((timer_t) TASK_FLAG(task));
TASK_RET(task) = (intptr_t) schedCall(task);
transit_task2unuse(task, &(TASK_ROOT(task))->root_rtc);
}
}
#endif
#endif
/*
* sched_hook_init() - Default INIT hook
*
* @root = root task
* @arg = unused
* return: <0 errors and 0 ok
*/
void *
sched_hook_init(void *root, void *arg __unused)
{
sched_root_task_t *r = root;
if (!r)
return (void*) -1;
#if SUP_ENABLE == KQ_SUPPORT
r->root_kq = kqueue();
if (r->root_kq == -1) {
LOGERR;
return (void*) -1;
}
#elif SUP_ENABLE == EP_SUPPORT
r->root_kq = epoll_create(KQ_EVENTS);
if (r->root_kq == -1) {
LOGERR;
return (void*) -1;
}
#else
r->root_kq ^= r->root_kq;
FD_ZERO(&r->root_fds[0]);
FD_ZERO(&r->root_fds[1]);
#endif
return NULL;
}
/*
* sched_hook_fini() - Default FINI hook
*
* @root = root task
* @arg = unused
* return: <0 errors and 0 ok
*/
void *
sched_hook_fini(void *root, void *arg __unused)
{
sched_root_task_t *r = root;
if (!r)
return (void*) -1;
#if SUP_ENABLE == KQ_SUPPORT || SUP_ENABLE == EP_SUPPORT
if (r->root_kq > 2) {
close(r->root_kq);
r->root_kq = 0;
}
#else
FD_ZERO(&r->root_fds[1]);
FD_ZERO(&r->root_fds[0]);
r->root_kq ^= r->root_kq;
#endif
return NULL;
}
/*
* sched_hook_cancel() - Default CANCEL hook
*
* @task = current task
* @arg = unused
* return: <0 errors and 0 ok
*/
void *
sched_hook_cancel(void *task, void *arg __unused)
{
sched_task_t *t = task, *tmp, *tt;
sched_root_task_t *r = NULL;
int flg;
#if SUP_ENABLE == KQ_SUPPORT
struct kevent chg[1];
struct timespec timeout = { 0, 0 };
#elif SUP_ENABLE == EP_SUPPORT
struct epoll_event ee = { .events = 0, .data.fd = 0 };
#else
register int i;
#endif
#ifdef AIO_SUPPORT
struct aiocb *acb;
#ifdef EVFILT_LIO
register int i = 0;
struct aiocb **acbs;
#endif /* EVFILT_LIO */
#endif /* AIO_SUPPORT */
if (!t || !TASK_ROOT(t))
return (void*) -1;
else
r = TASK_ROOT(t);
switch (TASK_TYPE(t)) {
case taskREAD:
/* check for multi subscribers */
flg = 0;
TAILQ_FOREACH_SAFE(tt, &r->root_read, task_node, tmp)
if (TASK_FD(tt) != TASK_FD(t))
continue;
else
flg++;
#if SUP_ENABLE == KQ_SUPPORT
#ifdef __NetBSD__
EV_SET(&chg[0], TASK_FD(t), EVFILT_READ, flg < 2 ? EV_DELETE : 0,
0, 0, (intptr_t) TASK_FD(t));
#else
EV_SET(&chg[0], TASK_FD(t), EVFILT_READ, flg < 2 ? EV_DELETE : 0,
0, 0, (void*) TASK_FD(t));
#endif
#elif SUP_ENABLE == EP_SUPPORT
ee.data.fd = TASK_FD(t);
ee.events ^= ee.events;
if (FD_ISSET(TASK_FD(t), &r->root_fds[1]))
ee.events = EPOLLOUT;
if (flg < 2)
FD_CLR(TASK_FD(t), &r->root_fds[0]);
else
ee.events |= EPOLLIN | EPOLLPRI;
#else
if (flg < 2) {
FD_CLR(TASK_FD(t), &r->root_fds[0]);
/* optimize select */
for (i = r->root_kq - 1; i > 2; i--)
if (FD_ISSET(i, &r->root_fds[0]) || FD_ISSET(i, &r->root_fds[1]))
break;
if (i > 2)
r->root_kq = i + 1;
}
#endif
break;
case taskWRITE:
/* check for multi subscribers */
flg = 0;
TAILQ_FOREACH_SAFE(tt, &r->root_write, task_node, tmp)
if (TASK_FD(tt) != TASK_FD(t))
continue;
else
flg++;
#if SUP_ENABLE == KQ_SUPPORT
#ifdef __NetBSD__
EV_SET(&chg[0], TASK_FD(t), EVFILT_WRITE, flg < 2 ? EV_DELETE : 0,
0, 0, (intptr_t) TASK_FD(t));
#else
EV_SET(&chg[0], TASK_FD(t), EVFILT_WRITE, flg < 2 ? EV_DELETE : 0,
0, 0, (void*) TASK_FD(t));
#endif
#elif SUP_ENABLE == EP_SUPPORT
ee.data.fd = TASK_FD(t);
ee.events ^= ee.events;
if (FD_ISSET(TASK_FD(t), &r->root_fds[0]))
ee.events = EPOLLIN | EPOLLPRI;
if (flg < 2)
FD_CLR(TASK_FD(t), &r->root_fds[1]);
else
ee.events |= EPOLLOUT;
#else
if (flg < 2) {
FD_CLR(TASK_FD(t), &r->root_fds[1]);
/* optimize select */
for (i = r->root_kq - 1; i > 2; i--)
if (FD_ISSET(i, &r->root_fds[0]) || FD_ISSET(i, &r->root_fds[1]))
break;
if (i > 2)
r->root_kq = i + 1;
}
#endif
break;
case taskALARM:
#if SUP_ENABLE == KQ_SUPPORT
/* check for multi subscribers */
flg = 0;
TAILQ_FOREACH_SAFE(tt, &r->root_alarm, task_node, tmp)
if (TASK_DATA(tt) != TASK_DATA(t))
continue;
else
flg++;
#ifdef __NetBSD__
EV_SET(&chg[0], (uintptr_t) TASK_DATA(t), EVFILT_TIMER, flg < 2 ? EV_DELETE : 0,
0, 0, (intptr_t) TASK_DATA(t));
#else
EV_SET(&chg[0], (uintptr_t) TASK_DATA(t), EVFILT_TIMER, flg < 2 ? EV_DELETE : 0,
0, 0, (void*) TASK_DATA(t));
#endif
#endif
break;
case taskNODE:
#if SUP_ENABLE == KQ_SUPPORT
/* check for multi subscribers */
flg = 0;
TAILQ_FOREACH_SAFE(tt, &r->root_node, task_node, tmp)
if (TASK_FD(tt) != TASK_FD(t))
continue;
else
flg++;
#ifdef __NetBSD__
EV_SET(&chg[0], TASK_FD(t), EVFILT_VNODE, flg < 2 ? EV_DELETE : 0,
0, 0, (intptr_t) TASK_FD(t));
#else
EV_SET(&chg[0], TASK_FD(t), EVFILT_VNODE, flg < 2 ? EV_DELETE : 0,
0, 0, (void*) TASK_FD(t));
#endif
#endif
break;
case taskPROC:
#if SUP_ENABLE == KQ_SUPPORT
/* check for multi subscribers */
flg = 0;
TAILQ_FOREACH_SAFE(tt, &r->root_proc, task_node, tmp)
if (TASK_VAL(tt) != TASK_VAL(t))
continue;
else
flg++;
#ifdef __NetBSD__
EV_SET(&chg[0], TASK_VAL(t), EVFILT_PROC, flg < 2 ? EV_DELETE : 0,
0, 0, (intptr_t) TASK_VAL(t));
#else
EV_SET(&chg[0], TASK_VAL(t), EVFILT_PROC, flg < 2 ? EV_DELETE : 0,
0, 0, (void*) TASK_VAL(t));
#endif
#endif
break;
case taskSIGNAL:
#if SUP_ENABLE == KQ_SUPPORT
/* check for multi subscribers */
flg = 0;
TAILQ_FOREACH_SAFE(tt, &r->root_signal, task_node, tmp)
if (TASK_VAL(tt) != TASK_VAL(t))
continue;
else
flg++;
#ifdef __NetBSD__
EV_SET(&chg[0], TASK_VAL(t), EVFILT_SIGNAL, flg < 2 ? EV_DELETE : 0,
0, 0, (intptr_t) TASK_VAL(t));
#else
EV_SET(&chg[0], TASK_VAL(t), EVFILT_SIGNAL, flg < 2 ? EV_DELETE : 0,
0, 0, (void*) TASK_VAL(t));
#endif
/* restore signal */
if (flg < 2)
signal(TASK_VAL(t), SIG_DFL);
#endif
break;
#ifdef AIO_SUPPORT
case taskAIO:
#if SUP_ENABLE == KQ_SUPPORT
/* check for multi subscribers */
flg = 0;
TAILQ_FOREACH_SAFE(tt, &r->root_aio, task_node, tmp)
if (TASK_VAL(tt) != TASK_VAL(t))
continue;
else
flg++;
#ifdef __NetBSD__
EV_SET(&chg[0], TASK_VAL(t), EVFILT_AIO, flg < 2 ? EV_DELETE : 0,
0, 0, (intptr_t) TASK_VAL(t));
#else
EV_SET(&chg[0], TASK_VAL(t), EVFILT_AIO, flg < 2 ? EV_DELETE : 0,
0, 0, (void*) TASK_VAL(t));
#endif
acb = (struct aiocb*) TASK_VAL(t);
if (acb) {
if (aio_cancel(acb->aio_fildes, acb) == AIO_CANCELED)
aio_return(acb);
free(acb);
TASK_VAL(t) = 0;
}
#endif
break;
#ifdef EVFILT_LIO
case taskLIO:
#if SUP_ENABLE == KQ_SUPPORT
/* check for multi subscribers */
flg = 0;
TAILQ_FOREACH_SAFE(tt, &r->root_lio, task_node, tmp)
if (TASK_VAL(tt) != TASK_VAL(t))
continue;
else
flg++;
#ifdef __NetBSD__
EV_SET(&chg[0], TASK_VAL(t), EVFILT_LIO, flg < 2 ? EV_DELETE : 0,
0, 0, (intptr_t) TASK_VAL(t));
#else
EV_SET(&chg[0], TASK_VAL(t), EVFILT_LIO, flg < 2 ? EV_DELETE : 0,
0, 0, (void*) TASK_VAL(t));
#endif
acbs = (struct aiocb**) TASK_VAL(t);
if (acbs) {
for (i = 0; i < TASK_DATLEN(t); i++) {
if (aio_cancel(acbs[i]->aio_fildes, acbs[i]) == AIO_CANCELED)
aio_return(acbs[i]);
free(acbs[i]);
}
free(acbs);
TASK_VAL(t) = 0;
}
#endif
break;
#endif /* EVFILT_LIO */
#endif /* AIO_SUPPORT */
#ifdef EVFILT_USER
case taskUSER:
#if SUP_ENABLE == KQ_SUPPORT
/* check for multi subscribers */
flg = 0;
TAILQ_FOREACH_SAFE(tt, &r->root_user, task_node, tmp)
if (TASK_VAL(tt) != TASK_VAL(t))
continue;
else
flg++;
#ifdef __NetBSD__
EV_SET(&chg[0], TASK_VAL(t), EVFILT_USER, flg < 2 ? EV_DELETE : 0,
0, 0, (intptr_t) TASK_VAL(t));
#else
EV_SET(&chg[0], TASK_VAL(t), EVFILT_USER, flg < 2 ? EV_DELETE : 0,
0, 0, (void*) TASK_VAL(t));
#endif
#endif
break;
#endif /* EVFILT_USER */
case taskTHREAD:
#ifdef HAVE_LIBPTHREAD
if (TASK_VAL(t)) {
pthread_cancel((pthread_t) TASK_VAL(t));
pthread_join((pthread_t) TASK_VAL(t), NULL);
if (TASK_VAL(t)) {
transit_task2unuse(t, &(TASK_ROOT(t))->root_thread);
TASK_VAL(t) = 0;
}
}
#endif
return NULL;
#if defined(HAVE_LIBRT) && defined(HAVE_TIMER_CREATE) && \
defined(HAVE_TIMER_SETTIME) && defined(HAVE_TIMER_DELETE)
case taskRTC:
timer_delete((timer_t) TASK_FLAG(t));
#if SUP_ENABLE == KQ_SUPPORT
schedCancel((sched_task_t*) TASK_RET(t));
#else
/* check for multi subscribers */
flg = 0;
TAILQ_FOREACH_SAFE(tt, &r->root_rtc, task_node, tmp)
if (TASK_DATA(tt) != TASK_DATA(t))
continue;
else
flg++;
/* restore signal */
if (flg < 2)
signal((intptr_t) TASK_DATA(t) + SIGRTMIN, SIG_DFL);
#endif
return NULL;
#endif /* HAVE_TIMER_CREATE */
default:
return NULL;
}
#if SUP_ENABLE == KQ_SUPPORT
kevent(r->root_kq, chg, 1, NULL, 0, &timeout);
#elif SUP_ENABLE == EP_SUPPORT
epoll_ctl(r->root_kq, ee.events ? EPOLL_CTL_MOD : EPOLL_CTL_DEL, ee.data.fd, &ee);
#endif
return NULL;
}
#ifdef HAVE_LIBPTHREAD
/*
* sched_hook_thread() - Default THREAD hook
*
* @task = current task
* @arg = pthread attributes
* return: <0 errors and 0 ok
*/
void *
sched_hook_thread(void *task, void *arg)
{
sched_task_t *t = task;
pthread_t tid;
sigset_t s, o;
if (!t || !TASK_ROOT(t))
return (void*) -1;
sigfillset(&s);
pthread_sigmask(SIG_BLOCK, &s, &o);
errno = pthread_create(&tid, (pthread_attr_t*) arg,
(void *(*)(void*)) _sched_threadWrapper, t);
pthread_sigmask(SIG_SETMASK, &o, NULL);
if (errno) {
LOGERR;
return (void*) -1;
} else
TASK_VAL(t) = (u_long) tid;
if (!TASK_ISLOCKED(t))
TASK_LOCK(t);
return NULL;
}
#endif
/*
* sched_hook_read() - Default READ hook
*
* @task = current task
* @arg = unused
* return: <0 errors and 0 ok
*/
void *
sched_hook_read(void *task, void *arg __unused)
{
sched_task_t *t = task;
sched_root_task_t *r = NULL;
#if SUP_ENABLE == KQ_SUPPORT
struct kevent chg[1];
struct timespec timeout = { 0, 0 };
#elif SUP_ENABLE == EP_SUPPORT
struct epoll_event ee;
int flg = 0;
#endif
if (!t || !TASK_ROOT(t))
return (void*) -1;
else
r = TASK_ROOT(t);
#if SUP_ENABLE == KQ_SUPPORT
#ifdef __NetBSD__
EV_SET(&chg[0], TASK_FD(t), EVFILT_READ, EV_ADD | EV_CLEAR, 0, 0, (intptr_t) TASK_FD(t));
#else
EV_SET(&chg[0], TASK_FD(t), EVFILT_READ, EV_ADD | EV_CLEAR, 0, 0, (void*) TASK_FD(t));
#endif
if (kevent(r->root_kq, chg, 1, NULL, 0, &timeout) == -1) {
if (r->root_hooks.hook_exec.exception)
r->root_hooks.hook_exec.exception(r, NULL);
else
LOGERR;
return (void*) -1;
}
#elif SUP_ENABLE == EP_SUPPORT
ee.data.fd = TASK_FD(t);
ee.events = EPOLLIN | EPOLLPRI;
if (FD_ISSET(TASK_FD(t), &r->root_fds[0]))
flg |= 1;
if (FD_ISSET(TASK_FD(t), &r->root_fds[1])) {
flg |= 2;
ee.events |= EPOLLOUT;
}
if (epoll_ctl(r->root_kq, flg ? EPOLL_CTL_MOD : EPOLL_CTL_ADD, TASK_FD(t), &ee) == -1) {
if (r->root_hooks.hook_exec.exception)
r->root_hooks.hook_exec.exception(r, NULL);
else
LOGERR;
return (void*) -1;
} else
FD_SET(TASK_FD(t), &r->root_fds[0]);
#else
FD_SET(TASK_FD(t), &r->root_fds[0]);
if (TASK_FD(t) >= r->root_kq)
r->root_kq = TASK_FD(t) + 1;
#endif
return NULL;
}
/*
* sched_hook_write() - Default WRITE hook
*
* @task = current task
* @arg = unused
* return: <0 errors and 0 ok
*/
void *
sched_hook_write(void *task, void *arg __unused)
{
sched_task_t *t = task;
sched_root_task_t *r = NULL;
#if SUP_ENABLE == KQ_SUPPORT
struct kevent chg[1];
struct timespec timeout = { 0, 0 };
#elif SUP_ENABLE == EP_SUPPORT
struct epoll_event ee;
int flg = 0;
#endif
if (!t || !TASK_ROOT(t))
return (void*) -1;
else
r = TASK_ROOT(t);
#if SUP_ENABLE == KQ_SUPPORT
#ifdef __NetBSD__
EV_SET(&chg[0], TASK_FD(t), EVFILT_WRITE, EV_ADD | EV_CLEAR, 0, 0, (intptr_t) TASK_FD(t));
#else
EV_SET(&chg[0], TASK_FD(t), EVFILT_WRITE, EV_ADD | EV_CLEAR, 0, 0, (void*) TASK_FD(t));
#endif
if (kevent(r->root_kq, chg, 1, NULL, 0, &timeout) == -1) {
if (r->root_hooks.hook_exec.exception)
r->root_hooks.hook_exec.exception(r, NULL);
else
LOGERR;
return (void*) -1;
}
#elif SUP_ENABLE == EP_SUPPORT
ee.data.fd = TASK_FD(t);
ee.events = EPOLLOUT;
if (FD_ISSET(TASK_FD(t), &r->root_fds[0])) {
flg |= 1;
ee.events |= EPOLLIN | EPOLLPRI;
}
if (FD_ISSET(TASK_FD(t), &r->root_fds[1]))
flg |= 2;
if (epoll_ctl(r->root_kq, flg ? EPOLL_CTL_MOD : EPOLL_CTL_ADD, TASK_FD(t), &ee) == -1) {
if (r->root_hooks.hook_exec.exception)
r->root_hooks.hook_exec.exception(r, NULL);
else
LOGERR;
return (void*) -1;
} else
FD_SET(TASK_FD(t), &r->root_fds[1]);
#else
FD_SET(TASK_FD(t), &r->root_fds[1]);
if (TASK_FD(t) >= r->root_kq)
r->root_kq = TASK_FD(t) + 1;
#endif
return NULL;
}
/*
* sched_hook_alarm() - Default ALARM hook
*
* @task = current task
* @arg = unused
* return: <0 errors and 0 ok
*/
void *
sched_hook_alarm(void *task, void *arg __unused)
{
#if SUP_ENABLE == KQ_SUPPORT
sched_task_t *t = task;
struct kevent chg[1];
struct timespec timeout = { 0, 0 };
if (!t || !TASK_ROOT(t))
return (void*) -1;
#ifdef __NetBSD__
EV_SET(&chg[0], (uintptr_t) TASK_DATA(t), EVFILT_TIMER, EV_ADD | EV_CLEAR, 0,
t->task_val.ts.tv_sec * 1000 + t->task_val.ts.tv_nsec / 1000000,
(intptr_t) TASK_DATA(t));
#else
EV_SET(&chg[0], (uintptr_t) TASK_DATA(t), EVFILT_TIMER, EV_ADD | EV_CLEAR, 0,
t->task_val.ts.tv_sec * 1000 + t->task_val.ts.tv_nsec / 1000000,
(void*) TASK_DATA(t));
#endif
if (kevent(TASK_ROOT(t)->root_kq, chg, 1, NULL, 0, &timeout) == -1) {
if (TASK_ROOT(t)->root_hooks.hook_exec.exception)
TASK_ROOT(t)->root_hooks.hook_exec.exception(TASK_ROOT(t), NULL);
else
LOGERR;
return (void*) -1;
}
#endif
return NULL;
}
/*
* sched_hook_node() - Default NODE hook
*
* @task = current task
* @arg = if arg == 42 then waiting for all events
* return: <0 errors and 0 ok
*/
void *
sched_hook_node(void *task, void *arg)
{
#if SUP_ENABLE == KQ_SUPPORT
sched_task_t *t = task;
struct kevent chg[1];
struct timespec timeout = { 0, 0 };
u_int addflags = (u_int) arg;
if (!t || !TASK_ROOT(t))
return (void*) -1;
#ifdef __NetBSD__
EV_SET(&chg[0], TASK_FD(t), EVFILT_VNODE, EV_ADD | EV_CLEAR,
NOTE_DELETE | NOTE_WRITE | NOTE_EXTEND | NOTE_ATTRIB |
NOTE_LINK | NOTE_RENAME | NOTE_REVOKE | addflags, 0, (intptr_t) TASK_FD(t));
#else
EV_SET(&chg[0], TASK_FD(t), EVFILT_VNODE, EV_ADD | EV_CLEAR,
NOTE_DELETE | NOTE_WRITE | NOTE_EXTEND | NOTE_ATTRIB |
NOTE_LINK | NOTE_RENAME | NOTE_REVOKE | addflags, 0, (void*) TASK_FD(t));
#endif
if (kevent(TASK_ROOT(t)->root_kq, chg, 1, NULL, 0, &timeout) == -1) {
if (TASK_ROOT(t)->root_hooks.hook_exec.exception)
TASK_ROOT(t)->root_hooks.hook_exec.exception(TASK_ROOT(t), NULL);
else
LOGERR;
return (void*) -1;
}
#endif
return NULL;
}
/*
* sched_hook_proc() - Default PROC hook
*
* @task = current task
* @arg = unused
* return: <0 errors and 0 ok
*/
void *
sched_hook_proc(void *task, void *arg __unused)
{
#if SUP_ENABLE == KQ_SUPPORT
sched_task_t *t = task;
struct kevent chg[1];
struct timespec timeout = { 0, 0 };
if (!t || !TASK_ROOT(t))
return (void*) -1;
#ifdef __NetBSD__
EV_SET(&chg[0], TASK_VAL(t), EVFILT_PROC, EV_ADD | EV_CLEAR,
NOTE_EXIT | NOTE_FORK | NOTE_EXEC | NOTE_TRACK, 0, (intptr_t) TASK_VAL(t));
#else
EV_SET(&chg[0], TASK_VAL(t), EVFILT_PROC, EV_ADD | EV_CLEAR,
NOTE_EXIT | NOTE_FORK | NOTE_EXEC | NOTE_TRACK, 0, (void*) TASK_VAL(t));
#endif
if (kevent(TASK_ROOT(t)->root_kq, chg, 1, NULL, 0, &timeout) == -1) {
if (TASK_ROOT(t)->root_hooks.hook_exec.exception)
TASK_ROOT(t)->root_hooks.hook_exec.exception(TASK_ROOT(t), NULL);
else
LOGERR;
return (void*) -1;
}
#endif
return NULL;
}
/*
* sched_hook_signal() - Default SIGNAL hook
*
* @task = current task
* @arg = unused
* return: <0 errors and 0 ok
*/
void *
sched_hook_signal(void *task, void *arg __unused)
{
#if SUP_ENABLE == KQ_SUPPORT
sched_task_t *t = task;
struct kevent chg[1];
struct timespec timeout = { 0, 0 };
if (!t || !TASK_ROOT(t))
return (void*) -1;
/* ignore signal */
signal(TASK_VAL(t), SIG_IGN);
#ifdef __NetBSD__
EV_SET(&chg[0], TASK_VAL(t), EVFILT_SIGNAL, EV_ADD | EV_CLEAR, 0, 0, (intptr_t) TASK_VAL(t));
#else
EV_SET(&chg[0], TASK_VAL(t), EVFILT_SIGNAL, EV_ADD | EV_CLEAR, 0, 0, (void*) TASK_VAL(t));
#endif
if (kevent(TASK_ROOT(t)->root_kq, chg, 1, NULL, 0, &timeout) == -1) {
if (TASK_ROOT(t)->root_hooks.hook_exec.exception)
TASK_ROOT(t)->root_hooks.hook_exec.exception(TASK_ROOT(t), NULL);
else
LOGERR;
return (void*) -1;
}
#endif
return NULL;
}
/*
* sched_hook_user() - Default USER hook
*
* @task = current task
* @arg = unused
* return: <0 errors and 0 ok
*/
#ifdef EVFILT_USER
void *
sched_hook_user(void *task, void *arg __unused)
{
#if SUP_ENABLE == KQ_SUPPORT
sched_task_t *t = task;
struct kevent chg[1];
struct timespec timeout = { 0, 0 };
if (!t || !TASK_ROOT(t))
return (void*) -1;
#ifdef __NetBSD__
EV_SET(&chg[0], TASK_VAL(t), EVFILT_USER, EV_ADD | EV_CLEAR, TASK_DATLEN(t),
0, (intptr_t) TASK_VAL(t));
#else
EV_SET(&chg[0], TASK_VAL(t), EVFILT_USER, EV_ADD | EV_CLEAR, TASK_DATLEN(t),
0, (void*) TASK_VAL(t));
#endif
if (kevent(TASK_ROOT(t)->root_kq, chg, 1, NULL, 0, &timeout) == -1) {
if (TASK_ROOT(t)->root_hooks.hook_exec.exception)
TASK_ROOT(t)->root_hooks.hook_exec.exception(TASK_ROOT(t), NULL);
else
LOGERR;
return (void*) -1;
}
#endif
return NULL;
}
#endif
#if SUP_ENABLE == KQ_SUPPORT
static inline void
fetch_hook_kevent_proceed(int en, struct kevent *res, sched_root_task_t *r)
{
struct kevent evt[1];
register int i;
sched_task_t *task, *tmp;
struct timespec now = { 0, 0 };
#ifdef AIO_SUPPORT
int len, fd;
struct aiocb *acb;
#ifdef EVFILT_LIO
int l;
off_t off;
struct aiocb **acbs;
struct iovec *iv;
#endif /* EVFILT_LIO */
#endif /* AIO_SUPPORT */
for (i = 0; i < en; i++) {
memcpy(evt, &res[i], sizeof evt);
evt->flags = EV_DELETE;
/* Put read/write task to ready queue */
switch (res[i].filter) {
case EVFILT_READ:
TAILQ_FOREACH_SAFE(task, &r->root_read, task_node, tmp) {
if (TASK_FD(task) == ((intptr_t) res[i].udata)) {
TASK_RET(task) = res[i].data;
TASK_FLAG(task) = (u_long) res[i].fflags;
/* remove read handle */
remove_task_from(task, &r->root_read);
if (r->root_hooks.hook_exec.exception && res[i].flags & EV_EOF) {
if (r->root_hooks.hook_exec.exception(r, (void*) EV_EOF)) {
task->task_type = taskUNUSE;
insert_task_to(task, &r->root_unuse);
} else {
task->task_type = taskREADY;
insert_task_to(task, &r->root_ready);
}
} else {
task->task_type = taskREADY;
insert_task_to(task, &r->root_ready);
}
break;
}
}
break;
case EVFILT_WRITE:
TAILQ_FOREACH_SAFE(task, &r->root_write, task_node, tmp) {
if (TASK_FD(task) == ((intptr_t) res[i].udata)) {
TASK_RET(task) = res[i].data;
TASK_FLAG(task) = (u_long) res[i].fflags;
/* remove write handle */
remove_task_from(task, &r->root_write);
if (r->root_hooks.hook_exec.exception && res[i].flags & EV_EOF) {
if (r->root_hooks.hook_exec.exception(r, (void*) EV_EOF)) {
task->task_type = taskUNUSE;
insert_task_to(task, &r->root_unuse);
} else {
task->task_type = taskREADY;
insert_task_to(task, &r->root_ready);
}
} else {
task->task_type = taskREADY;
insert_task_to(task, &r->root_ready);
}
break;
}
}
break;
case EVFILT_TIMER:
TAILQ_FOREACH_SAFE(task, &r->root_alarm, task_node, tmp) {
if ((uintptr_t) TASK_DATA(task) == ((uintptr_t) res[i].udata)) {
TASK_RET(task) = res[i].data;
TASK_FLAG(task) = (u_long) res[i].fflags;
/* remove alarm handle */
transit_task2ready(task, &r->root_alarm);
break;
}
}
break;
case EVFILT_VNODE:
TAILQ_FOREACH_SAFE(task, &r->root_node, task_node, tmp) {
if (TASK_FD(task) == ((intptr_t) res[i].udata)) {
TASK_RET(task) = res[i].data;
TASK_FLAG(task) = (u_long) res[i].fflags;
/* remove node handle */
transit_task2ready(task, &r->root_node);
break;
}
}
break;
case EVFILT_PROC:
TAILQ_FOREACH_SAFE(task, &r->root_proc, task_node, tmp) {
if (TASK_VAL(task) == ((uintptr_t) res[i].udata)) {
TASK_RET(task) = res[i].data;
TASK_FLAG(task) = (u_long) res[i].fflags;
/* remove proc handle */
transit_task2ready(task, &r->root_proc);
break;
}
}
break;
case EVFILT_SIGNAL:
TAILQ_FOREACH_SAFE(task, &r->root_signal, task_node, tmp) {
if (TASK_VAL(task) == ((uintptr_t) res[i].udata)) {
TASK_RET(task) = res[i].data;
TASK_FLAG(task) = (u_long) res[i].fflags;
/* remove signal handle */
transit_task2ready(task, &r->root_signal);
break;
}
}
break;
#ifdef AIO_SUPPORT
case EVFILT_AIO:
TAILQ_FOREACH_SAFE(task, &r->root_aio, task_node, tmp) {
acb = (struct aiocb*) TASK_VAL(task);
if (acb == ((struct aiocb*) res[i].udata)) {
TASK_RET(task) = res[i].data;
TASK_FLAG(task) = (u_long) res[i].fflags;
/* remove user handle */
transit_task2ready(task, &r->root_aio);
fd = acb->aio_fildes;
if ((len = aio_return(acb)) != -1) {
if (lseek(fd, acb->aio_offset + len, SEEK_CUR) == -1)
LOGERR;
} else
LOGERR;
free(acb);
TASK_DATLEN(task) = (u_long) len;
TASK_FD(task) = fd;
break;
}
}
break;
#ifdef EVFILT_LIO
case EVFILT_LIO:
TAILQ_FOREACH_SAFE(task, &r->root_lio, task_node, tmp) {
acbs = (struct aiocb**) TASK_VAL(task);
if (acbs == ((struct aiocb**) res[i].udata)) {
TASK_RET(task) = res[i].data;
TASK_FLAG(task) = (u_long) res[i].fflags;
/* remove user handle */
transit_task2ready(task, &r->root_lio);
iv = (struct iovec*) TASK_DATA(task);
fd = acbs[0]->aio_fildes;
off = acbs[0]->aio_offset;
for (len = 0; i < TASK_DATLEN(task); len += l, i++) {
if ((iv[i].iov_len = aio_return(acbs[i])) == -1)
l = 0;
else
l = iv[i].iov_len;
free(acbs[i]);
}
free(acbs);
TASK_DATLEN(task) = (u_long) len;
TASK_FD(task) = fd;
if (lseek(fd, off + len, SEEK_CUR) == -1)
LOGERR;
break;
}
}
break;
#endif /* EVFILT_LIO */
#endif /* AIO_SUPPORT */
#ifdef EVFILT_USER
case EVFILT_USER:
TAILQ_FOREACH_SAFE(task, &r->root_user, task_node, tmp) {
if (TASK_VAL(task) == ((uintptr_t) res[i].udata)) {
TASK_RET(task) = res[i].data;
TASK_FLAG(task) = (u_long) res[i].fflags;
/* remove user handle */
transit_task2ready(task, &r->root_user);
break;
}
}
break;
#endif /* EVFILT_USER */
}
if (kevent(r->root_kq, evt, 1, NULL, 0, &now) == -1) {
if (r->root_hooks.hook_exec.exception)
r->root_hooks.hook_exec.exception(r, NULL);
else
LOGERR;
}
}
}
#endif
#if SUP_ENABLE == EP_SUPPORT
static inline void
fetch_hook_epoll_proceed(int en, struct epoll_event *res, sched_root_task_t *r)
{
register int i, flg;
int ops = EPOLL_CTL_DEL;
sched_task_t *t, *tmp, *task;
struct epoll_event evt[1];
for (i = 0; i < en; i++) {
memcpy(evt, &res[i], sizeof evt);
if (evt->events & (EPOLLIN | EPOLLPRI)) {
flg = 0;
task = NULL;
TAILQ_FOREACH_SAFE(t, &r->root_read, task_node, tmp) {
if (TASK_FD(t) == evt->data.fd) {
if (!flg)
task = t;
flg++;
}
}
if (flg && task) {
TASK_FLAG(task) = ioctl(TASK_FD(task), FIONREAD, &TASK_RET(task));
/* remove read handle */
remove_task_from(task, &r->root_read);
if (r->root_hooks.hook_exec.exception && evt->events & (EPOLLRDHUP | EPOLLERR | EPOLLHUP)) {
if (r->root_hooks.hook_exec.exception(r, (void*) (intptr_t)
(evt->events & EPOLLERR ? EV_ERROR | EV_EOF : EV_EOF))) {
task->task_type = taskUNUSE;
insert_task_to(task, &r->root_unuse);
} else {
task->task_type = taskREADY;
insert_task_to(task, &r->root_ready);
}
} else {
task->task_type = taskREADY;
insert_task_to(task, &r->root_ready);
}
evt->events ^= evt->events;
if (FD_ISSET(evt->data.fd, &r->root_fds[1])) {
ops = EPOLL_CTL_MOD;
evt->events |= EPOLLOUT;
}
if (flg > 1) {
ops = EPOLL_CTL_MOD;
evt->events |= EPOLLIN | EPOLLPRI;
} else
FD_CLR(evt->data.fd, &r->root_fds[0]);
}
} else if (evt->events & EPOLLOUT) {
flg = 0;
task = NULL;
TAILQ_FOREACH_SAFE(t, &r->root_write, task_node, tmp) {
if (TASK_FD(t) == evt->data.fd) {
if (!flg)
task = t;
flg++;
}
}
if (flg && task) {
TASK_FLAG(task) = ioctl(TASK_FD(task), FIONWRITE, &TASK_RET(task));
/* remove write handle */
remove_task_from(task, &r->root_write);
if (r->root_hooks.hook_exec.exception && evt->events & (EPOLLERR | EPOLLHUP)) {
if (r->root_hooks.hook_exec.exception(r, (void*) (intptr_t)
(evt->events & EPOLLERR ? EV_ERROR | EV_EOF : EV_EOF))) {
task->task_type = taskUNUSE;
insert_task_to(task, &r->root_unuse);
} else {
task->task_type = taskREADY;
insert_task_to(task, &r->root_ready);
}
} else {
task->task_type = taskREADY;
insert_task_to(task, &r->root_ready);
}
evt->events ^= evt->events;
if (FD_ISSET(evt->data.fd, &r->root_fds[0])) {
ops = EPOLL_CTL_MOD;
evt->events |= EPOLLIN | EPOLLPRI;
}
if (flg > 1) {
ops = EPOLL_CTL_MOD;
evt->events |= EPOLLOUT;
} else
FD_CLR(evt->data.fd, &r->root_fds[1]);
}
}
if (epoll_ctl(r->root_kq, ops, evt->data.fd, evt) == -1) {
if (r->root_hooks.hook_exec.exception) {
r->root_hooks.hook_exec.exception(r, NULL);
} else
LOGERR;
}
}
}
#endif
#if SUP_ENABLE == NO_SUPPORT
static inline void
fetch_hook_select_proceed(int en, fd_set rfd, fd_set wfd, fd_set xfd, sched_root_task_t *r)
{
register int i, flg;
sched_task_t *t, *tmp, *task = NULL;
/* skip select check if return value from select is zero */
if (!en)
return;
for (i = 0; i < r->root_kq; i++) {
if (FD_ISSET(i, &rfd) || FD_ISSET(i, &xfd)) {
flg = 0;
TAILQ_FOREACH_SAFE(t, &r->root_read, task_node, tmp) {
if (TASK_FD(t) == i) {
if (!flg)
task = t;
flg++;
}
}
if (flg && task) {
TASK_FLAG(task) = ioctl(TASK_FD(task), FIONREAD, &TASK_RET(task));
/* remove read handle */
remove_task_from(task, &r->root_read);
if (r->root_hooks.hook_exec.exception) {
if (r->root_hooks.hook_exec.exception(r, NULL)) {
task->task_type = taskUNUSE;
insert_task_to(task, &r->root_unuse);
} else {
task->task_type = taskREADY;
insert_task_to(task, &r->root_ready);
}
} else {
task->task_type = taskREADY;
insert_task_to(task, &r->root_ready);
}
/* remove resouce */
if (flg == 1)
FD_CLR(i, &r->root_fds[0]);
}
} else if (FD_ISSET(i, &wfd)) {
flg = 0;
TAILQ_FOREACH_SAFE(t, &r->root_write, task_node, tmp) {
if (TASK_FD(t) == i) {
if (!flg)
task = t;
flg++;
}
}
if (flg && task) {
TASK_FLAG(task) = ioctl(TASK_FD(task), FIONWRITE, &TASK_RET(task));
/* remove write handle */
remove_task_from(task, &r->root_write);
if (r->root_hooks.hook_exec.exception) {
if (r->root_hooks.hook_exec.exception(r, NULL)) {
task->task_type = taskUNUSE;
insert_task_to(task, &r->root_unuse);
} else {
task->task_type = taskREADY;
insert_task_to(task, &r->root_ready);
}
} else {
task->task_type = taskREADY;
insert_task_to(task, &r->root_ready);
}
/* remove resouce */
if (flg == 1)
FD_CLR(i, &r->root_fds[1]);
}
}
}
/* optimize select */
for (i = r->root_kq - 1; i > 2; i--)
if (FD_ISSET(i, &r->root_fds[0]) || FD_ISSET(i, &r->root_fds[1]))
break;
if (i > 2)
r->root_kq = i + 1;
}
#endif
/*
* sched_hook_fetch() - Default FETCH hook
*
* @root = root task
* @arg = unused
* return: NULL error or !=NULL fetched task
*/
void *
sched_hook_fetch(void *root, void *arg __unused)
{
sched_root_task_t *r = root;
sched_task_t *task, *tmp;
struct timespec now, m, mtmp;
#if SUP_ENABLE == KQ_SUPPORT
struct kevent res[KQ_EVENTS];
struct timespec *timeout;
#elif SUP_ENABLE == EP_SUPPORT
struct epoll_event res[KQ_EVENTS];
u_long timeout = 0;
#else
struct timeval *timeout, tv;
fd_set rfd, wfd, xfd;
#endif
int en;
if (!r)
return NULL;
/* get new task by queue priority */
while ((task = TAILQ_FIRST(&r->root_event))) {
transit_task2unuse(task, &r->root_event);
return task;
}
while ((task = TAILQ_FIRST(&r->root_ready))) {
transit_task2unuse(task, &r->root_ready);
return task;
}
/* if present member of task, set NOWAIT */
if (!TAILQ_FIRST(&r->root_task)) {
/* timer tasks */
#ifdef TIMER_WITHOUT_SORT
clock_gettime(CLOCK_MONOTONIC, &now);
sched_timespecclear(&r->root_wait);
TAILQ_FOREACH(task, &r->root_timer, task_node) {
if (!sched_timespecisset(&r->root_wait))
r->root_wait = TASK_TS(task);
else if (sched_timespeccmp(&TASK_TS(task), &r->root_wait, -) < 0)
r->root_wait = TASK_TS(task);
}
if (TAILQ_FIRST(&r->root_timer)) {
m = r->root_wait;
sched_timespecsub(&m, &now, &mtmp);
r->root_wait = mtmp;
} else {
/* set wait INFTIM */
sched_timespecinf(&r->root_wait);
}
#else /* ! TIMER_WITHOUT_SORT */
if ((task = TAILQ_FIRST(&r->root_timer))) {
clock_gettime(CLOCK_MONOTONIC, &now);
m = TASK_TS(task);
sched_timespecsub(&m, &now, &mtmp);
r->root_wait = mtmp;
} else {
/* set wait INFTIM */
sched_timespecinf(&r->root_wait);
}
#endif /* TIMER_WITHOUT_SORT */
} else /* no waiting for event, because we have ready task */
sched_timespecclear(&r->root_wait);
if (r->root_wait.tv_sec != -1 && r->root_wait.tv_nsec != -1) {
#if SUP_ENABLE == KQ_SUPPORT
timeout = &r->root_wait;
#elif SUP_ENABLE == EP_SUPPORT
timeout = r->root_wait.tv_sec * 1000 + r->root_wait.tv_nsec / 1000000;
#else
sched_timespec2val(&r->root_wait, &tv);
timeout = &tv;
#endif /* KQ_SUPPORT */
} else if (sched_timespecisinf(&r->root_poll))
#if SUP_ENABLE == EP_SUPPORT
timeout = -1;
#else
timeout = NULL;
#endif
else {
#if SUP_ENABLE == KQ_SUPPORT
timeout = &r->root_poll;
#elif SUP_ENABLE == EP_SUPPORT
timeout = r->root_poll.tv_sec * 1000 + r->root_poll.tv_nsec / 1000000;
#else
sched_timespec2val(&r->root_poll, &tv);
timeout = &tv;
#endif /* KQ_SUPPORT */
}
#if SUP_ENABLE == KQ_SUPPORT
if ((en = kevent(r->root_kq, NULL, 0, res, KQ_EVENTS, timeout)) == -1) {
#elif SUP_ENABLE == EP_SUPPORT
if ((en = epoll_wait(r->root_kq, res, KQ_EVENTS, timeout)) == -1) {
#else
rfd = xfd = r->root_fds[0];
wfd = r->root_fds[1];
if ((en = select(r->root_kq, &rfd, &wfd, &xfd, timeout)) == -1) {
#endif /* KQ_SUPPORT */
if (r->root_hooks.hook_exec.exception) {
if (r->root_hooks.hook_exec.exception(r, NULL))
return NULL;
} else if (errno != EINTR)
LOGERR;
goto skip_event;
}
/* Go and catch the cat into pipes ... */
#if SUP_ENABLE == KQ_SUPPORT
/* kevent dispatcher */
fetch_hook_kevent_proceed(en, res, r);
#elif SUP_ENABLE == EP_SUPPORT
/* epoll dispatcher */
fetch_hook_epoll_proceed(en, res, r);
#else
/* select dispatcher */
fetch_hook_select_proceed(en, rfd, wfd, xfd, r);
#endif /* KQ_SUPPORT */
skip_event:
/* timer update & put in ready queue */
clock_gettime(CLOCK_MONOTONIC, &now);
TAILQ_FOREACH_SAFE(task, &r->root_timer, task_node, tmp)
if (sched_timespeccmp(&now, &TASK_TS(task), -) >= 0)
transit_task2ready(task, &r->root_timer);
/* put regular task priority task to ready queue,
if there is no ready task or reach max missing hit for regular task */
if ((task = TAILQ_FIRST(&r->root_task))) {
if (!TAILQ_FIRST(&r->root_ready) || r->root_miss >= TASK_VAL(task)) {
r->root_miss ^= r->root_miss;
transit_task2ready(task, &r->root_task);
} else
r->root_miss++;
} else
r->root_miss ^= r->root_miss;
/* OK, lets get ready task !!! */
task = TAILQ_FIRST(&r->root_ready);
if (task)
transit_task2unuse(task, &r->root_ready);
return task;
}
/*
* sched_hook_exception() - Default EXCEPTION hook
*
* @root = root task
* @arg = custom handling: if arg == EV_EOF or other value; default: arg == NULL log errno
* return: <0 errors and 0 ok
*/
void *
sched_hook_exception(void *root, void *arg)
{
sched_root_task_t *r = root;
if (!r)
return NULL;
/* custom exception handling ... */
if (arg) {
if (arg == (void*) EV_EOF)
return NULL;
return (void*) -1; /* raise scheduler error!!! */
}
/* if error hook exists */
if (r->root_hooks.hook_root.error)
return (r->root_hooks.hook_root.error(root, (void*) ((intptr_t) errno)));
/* default case! */
LOGERR;
return NULL;
}
/*
* sched_hook_condition() - Default CONDITION hook
*
* @root = root task
* @arg = killState from schedRun()
* return: NULL kill scheduler loop or !=NULL ok
*/
void *
sched_hook_condition(void *root, void *arg)
{
sched_root_task_t *r = root;
if (!r)
return NULL;
return (void*) (*r->root_cond - *(intptr_t*) arg);
}
/*
* sched_hook_rtc() - Default RTC hook
*
* @task = current task
* @arg = unused
* return: <0 errors and 0 ok
*/
void *
sched_hook_rtc(void *task, void *arg __unused)
{
#if defined(HAVE_LIBRT) && defined(HAVE_TIMER_CREATE) && \
defined(HAVE_TIMER_SETTIME) && defined(HAVE_TIMER_DELETE)
sched_task_t *sigt = NULL, *t = task;
struct itimerspec its;
struct sigevent evt;
timer_t tmr;
#if SUP_ENABLE != KQ_SUPPORT
struct sigaction sa;
#endif
if (!t || !TASK_ROOT(t))
return (void*) -1;
memset(&evt, 0, sizeof evt);
evt.sigev_notify = SIGEV_SIGNAL;
evt.sigev_signo = (intptr_t) TASK_DATA(t) + SIGRTMIN;
evt.sigev_value.sival_ptr = t;
if (timer_create(CLOCK_MONOTONIC, &evt, &tmr) == -1) {
if (TASK_ROOT(t)->root_hooks.hook_exec.exception)
TASK_ROOT(t)->root_hooks.hook_exec.exception(TASK_ROOT(t), NULL);
else
LOGERR;
return (void*) -1;
} else
TASK_FLAG(t) = (u_long) tmr;
#if SUP_ENABLE == KQ_SUPPORT
if (!(sigt = schedSignal(TASK_ROOT(t), _sched_rtcWrapper, TASK_ARG(t), evt.sigev_signo,
t, (size_t) tmr))) {
if (TASK_ROOT(t)->root_hooks.hook_exec.exception)
TASK_ROOT(t)->root_hooks.hook_exec.exception(TASK_ROOT(t), NULL);
else
LOGERR;
timer_delete(tmr);
return (void*) -1;
} else
TASK_RET(t) = (uintptr_t) sigt;
#else
memset(&sa, 0, sizeof sa);
sigemptyset(&sa.sa_mask);
sa.sa_sigaction = _sched_rtcSigWrapper;
sa.sa_flags = SA_SIGINFO | SA_RESTART;
if (sigaction(evt.sigev_signo, &sa, NULL) == -1) {
if (TASK_ROOT(t)->root_hooks.hook_exec.exception)
TASK_ROOT(t)->root_hooks.hook_exec.exception(TASK_ROOT(t), NULL);
else
LOGERR;
timer_delete(tmr);
return (void*) -1;
}
#endif
memset(&its, 0, sizeof its);
its.it_value.tv_sec = t->task_val.ts.tv_sec;
its.it_value.tv_nsec = t->task_val.ts.tv_nsec;
if (timer_settime(tmr, TIMER_RELTIME, &its, NULL) == -1) {
if (TASK_ROOT(t)->root_hooks.hook_exec.exception)
TASK_ROOT(t)->root_hooks.hook_exec.exception(TASK_ROOT(t), NULL);
else
LOGERR;
schedCancel(sigt);
timer_delete(tmr);
return (void*) -1;
}
#endif /* HAVE_TIMER_CREATE */
return NULL;
}
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>